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Three-Component Regioselective Carboamidation of 1,3-Enynes 
via Rhodium(III)-Catalyzed C-H Activation
Lingheng Kong,a,b Xi Han,a Panjie Hu,a Fen wang,*a Xingwei Li*a

Rhodium-catalyzed regio- and stereoselective three-component 
carboamidation of 1,3-enynes has been realized using indoles and 
dioxazolones as the functionalizing reagents. The reaction 
proceeded via C-H activation, alkyne insertion, and formal 1,4-
rhodium migration to give Rh(III) allyl intermediates that undergo 
regioselective electrophilic amination. A wide range of multi-
substituted skipped 1,4-dienes have been constructed in good 
yields and excellent stereoselectivity. The stereoselectivity is under 
substrate control. 1,3-Enynes bearing a relatively bulky alkyne 
terminus reacted with Z-selectivity. In contrast, a sterically less 
hindered alkyne terminus tends to predominantly give the E-
configured skipped diene.

Multicomponent reactions allowed the rapid assembly of 
three or more reagents to construct value-added complex 
structures from simple precursors in one shot. The presence of 
multiple functional groups in the products also offers useful 
handles and enhances the molecular complexity toward 
applications.1 With the development of metal-catalyzed C-H 
functionalization,2 unactivated C-H bonds in arenes serve as a 
convenient and abundant carbon source that reacts with two 
different coupling partners for the synthesis of an enormous 
range of products.3 In this context, three-component 
carboamination reactions provide a highly efficient strategy to 
create C-C and C-N bonds in a single step.4 In 2019, Ellman 
elegantly reported Rh(III)-catalyzed 1,1-carboamination of 
terminal alkenes using dioxazalone as the amidating reagent.5 
Subsequently, Ellman6 and Rovis7 independently reported 1,2-
carboamination of bridged bicyclic alkenes or acrylates. 
Recently, Glorius reported 1,4-carboamidation of conjugated 

dienes,8 and our group realized the related enantioselective 
version with the complementary 1,2-regioselectivity.9 Despite 
the progress, the coupling partner of three-component 
carboamination reactions have been limited to alkenes and 
conjugated dienes, and the regioselectivity has also been quite 
limited.10 Given the abundance of unsaturated reagents, it is 
necessary to explore reagents other than olefins and dienes. 
The employment of other multifunctional unsaturated coupling 
reagents should enhance the reaction patterns, the structural 
complexity of the products, and utility of the multifunctional 
products.
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In this context, the Lam group introduced 1,3-enynes as 
versatile reactants in Rh(III)-catalyzed C-H bond activation-
annulation reactions.11 These reactions were proposed to occur 
via a key step of alkenyl-to-allyl 1,4-rhodium migration, 
resulting in formation of reactive -allyl intermediates, and 
subsequent interactions with the nucleophilic directing group 
afforded the [3 + 3], [4 + 1], or [5+1] annulation with 
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concomitant formation of C-C and C-N bonds.12 In 2020 during 
the development of the asymmetric version of this system,13 
our group further explored the mechanism of the allyl 
formation and proposed an alternative mechanism based 
experimental and computational studies.12b Despite the 
systematic development, the reaction pattern is limited to two-
component annulation, where stoichiometric amounts of 
oxidant were required in order to re-oxidize the Rh(I) species 
back to the Rh(III) to complete the catalytic cycle.14 We 
reasoned that the key rhodium 3-allyl species generated from 
the interactions between the Rh-aryl bond and the 1,3-enyne 
could be trapped by an electrophilic amidating reagent under 
redox-neutral conditions.15 However, the reaction may be 
complicated by regioselectivity of the allyl amidation because 
two eta-3 allyl species can be possible. In addition, the 
stereoselectivity issue may add to the complexity. Herein, we 
report Rh(III)-catalyzed three-component carboamination 
reaction between indoles, 1,3-enynes, and dioxazolones with 
high E/Z selectivity and high regioselectivity.
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Scheme 2. Three-component carboamidation for the synthesis of E-products. 
aReaction Conditions: Arene (0.2 mmol), 1,3-enynes (0.3 mmol), amidating 
reagents (0.24 mmol), [Cp*Rh(MeCN)3][SbF6]2 (8 mol%), and 4 Å M.S. (100 mg) in 
TFE (2 mL) at 0 oC for 12 h without exclusion of air or moisture. bIsolated yield; E/Z 
ratio >25:1 unless otherwise mentioned. cThe ratio of E/Z. dAt 15 oC for 24 h.

We initiated our investigation by identifying the reaction 
conditions with N-pyrimidylindole 1a, 1,3-enyne 2a, and 
methyldioxazolone 3a as the model substrates (ESI, Table S1). 

To our delight, we observed the desired carboamidation 
product 4 in moderate yield and with > 25:1 E/Z ratio in the 
presence of [Cp*Rh(MeCN)3][SbF6]2 and 4 Å M.S. in HFIP at 30 °C 
for 12 h without exclusion of air or moisture (entry 1). The E 
configuration of the product 4 was determined by X-ray 
crystallography (CCDC 2239434). Switching the catalyst to 
[Cp*RhCl2]2/AgSbF6 or [Cp*Rh(OAc)2] only gave lower yields 
(entries 2-3). Screening of solvents revealed that TFE was the 
best choice, which afforded the desired product in 65% yield 
(entries 4-8). In contrast, poor stereoselectivity was obtained 
when a halogenated solvent was used. To our delight, the yield 
was increased to 88% when the reaction temperature was 
lowered to 0 °C without elongation of the reaction time (entries 
9-10)
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Under the optimized reaction conditions, the scope and 
limitation of this three-component carboamidation reaction 
were examined (Scheme 2). As anticipated, N-
pyrimidinylindoles bearing electron-donating, -withdrawing 
and halogen groups at the C4/C5/C6/C7 positions were all 
tolerated and reacted to give the corresponding products in 52-
95% yields and with perfect E-selectivity (6-22). When 3-phenyl 
substituted indole was employed, the reaction afforded 
product 5 in 72% yield, which indicated that the reaction 
efficiency was insensitive to the steric effect. Next, a broad 
scope of the other two coupling partners has also been 
established. n-Hexyl, benzyl, and phenyl substituted 
dioxazolones all worked smoothly to furnish the 
carboamidation products in moderate to good yields (23-25). 
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1,3-Enynes with less bulky alkyl or cycloalkyl terminus reacted 
smoothly to yield the corresponding products in 65-73% yields 
(26-28). In all these cases, the carboamidation product was 
exclusively E-configured. In contrast, two stereoisomeric 
products (E and Z configuration, 29 and 30) were isolated in 62% 
and 17% yield, respectively, for cyclic olefin substituted 1,3-
enyne, indicative of the stereoelectronic effect of the alkyne. In 
addition, the arene has also been extended to an oxime ether, 
accessing the product in acceptable yield in the same selectivity 
(31).

To better define the scope of the enyne substrate, we further 
examined those with a relatively bulky alkyne terminus. 
Delightfully, the Z-configured product 32 was obtained in 
excellent yield and selectivity after quite extensive optimization 
studies using the alkyne with a large iPr terminus. The scope of 
the carboamidation reaction in this selectivity was then 
explored (Scheme 3). N-pyrimidinylindoles containing electron-
donating groups (Me, OMe), -withdrawing groups (CF3), as well 
as halogen substituents (F, Br) at the C4/C5/C6 positions all 
coupled effectively, and the products were isolated in 54-97% 
yields and with 9:1 to > 25:1 Z-selectivity (32-45). The reaction 
also tolerated a 7-methoxyl-substituted indole substrate, and 
the product 46 was isolated in 72% yield. Introduction of a Me 
group into the pyrimidyl ring was also tolerated, affording the 
corresponding product in high yield (47). Replacement of the 
Me group in the dioxazolone by other alkyl or aryl groups such 
as n-hexyl, benzyl or phenyl group also afforded the product in 
40-93% yields (48-50) and in excellent selectivity. In addition, 
cyclohexyl-substituted 1,3-enyne could also be employed, and 
the product 51 was isolated in 79% yield. The Z configuration of 
product 51 was confirmed by X-ray crystallography (CCDC 
2239432). In contrast, no reaction occurred for an aryl-linked 
enyne. 
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Scheme 4. Scale-Up and Derivatization Reactions.

Additional experiments have been conducted to further 
explore the scope of this three-component carboamination 
reaction. The carbon-based nucleophile has been extended to 
phenylboronic acid and 7-methylbicyclo[4.2.0]octa-1,3,5-trien-
7-ol, which reacted to give the corresponding reactive 
organorhodium intermediate via transmetalation or -carbon 
elimination, affording the products 52 and 53 in moderate 
yields (eq 1). These results indicated that the directing group in 
the arene is no longer necessary. To demonstrate the synthetic 
utility of this protocol, a scale-up (3 mmol) synthesis of product 
9 was performed, which proceeded smoothly to give 9 in 90% 

isolated yield under reduced catalyst loading (eq 2). Synthetic 
application has been also briefly explored. The treatment of 9 
with NaOEt afforded 1,3-diene 54 in 58% yield with removal of 
the directing group (eq 3).

To interrogate the mechanism of this coupling system, 
several experiments have been conducted (Scheme 5). The 
carboamination product 4 was isolated in 85% yield when using 
rhodacyclic complex 55 as a catalyst precursor under otherwise 
the same conditions. This observation suggests that the 
reaction follows a C-H activation pathway. Next, competition 
experiments using an equimolar mixture of electronically 
differentiated indoles (4-Me and 4-CF3) revealed that electron-
rich substrate is kinetically favored. Furthermore, the reaction 
of 1a with the hexadeuterated 1,3-enyne [D]6-2a was 
conducted. Significant levels of deuteration (>95% D) were 
observed at the alkenyl and the original methyl positions, and 
essentially no deuterium scrambling was detected in the 
product. This seems to suggest irreversible 1,4-Rh migration 
and the previously proposed -elimination pathway is probably 
not relevant.12b
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Based on the experimental results and previous related 
mechanistic proposals,11-12 a plausible catalytic cycle is outlined 
in Scheme 6. C-H activation of indole 1a gives a five-membered 
rhodacycle II. Subsequently, coordination of the 1,3-enyne and 
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regioselective migratory insertion of Rh-C(aryl) delivers a 
rhodium alkenyl intermediate III, which is proposed to undergo 
1,4-Rh(III) migration to generate the intermediate IV. Allyl-to-
allyl rearrangement of V generates a π-allyl rhodium(III) specie 
VI or VI’, and the stereochemistry of the allyl ligand is largely 
dictated by steric effect of the R group in the 1,3-enyne such that 
minimized repulsions between the rhodium and the indole ring 
or the R group is experienced. This π-allylrhodium intermediate 
then undergoes ligation of the dioxazolone, followed by 
decarboxylation to give a reactive Rh(V) allyl nitrene species VII 
or VII’. Then C-N reductive elimination from this intermediate 
and protodemetalation releases E or Z-configured products and 
closes the catalytic cycle.

In conclusion, we have developed a Rh(III)-catalyzed 
stereoselective three-component carboamination reaction 
between indoles, 1,3-enynes, and dioxazolones, providing a 
new approach to access multi-substituted 1,4-dienes in a redox-
neutral fashion. The stereoselectivity is under substrate control. 
Large 1,3-enynes with a large alkyne terminus (Cy, iPr) tend to 
give Z-configured products, whereas small steric group at this 
position (BnCH2, cyclopropyl) reacted predominantly with the E-
selectivity. The reaction pathway likely involves the Rh(III)-
catalyzed C-H activation, alkyne insertion, 1,4-Rh(III) migration, 
allyl-to-allyl rearrangement, and subsequent electrophilic 
amidation. Further studies on the three-component 
difunctionalization reaction of other unsaturated coupling 
partner are currently underway in our laboratories.
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