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Catalytic atroposelective synthesis

Shao-Hua Xiang    1,2, Wei-Yi Ding    1  , Yong-Bin Wang    1 & Bin Tan    1 

Atropisomeric architectures are increasingly encountered in modern 
materials and medicinally important compounds. More importantly, they are 
now a characteristic of broadly useful chiral ligands and organocatalysts. Over 
the past decade, substantial advancements have been made in enhancing 
the accessibility of major classes of atropisomers through the refinement 
of existing strategies and the introduction of contemporary concepts for 
catalytic atroposelective synthesis. This synthetic capability enables the 
expansion of chemical space and facilitates the preparation of valuable 
atropisomeric scaffolds. Here we review the state of the art in the asymmetric 
synthesis of atropisomers with the help of selected examples. Focus will 
be placed on the strategies that have emerged rapidly in recent years, and 
that are characterized by high versatility and modularity. Additionally, the 
incorporation of emerging synthetic tools and representative scaffolds are 
discussed, alongside future directions in this research domain.

Axial chirality is a stereochemical phenomenon originating from 
restricted rotation around a stereogenic axis with four non-planar 
arranged ortho-substituents. According to this definition, atropiso-
mers, spiranes, allenes and spiro structures could display this form 
of molecular chirality. The phenomenon of axial chirality was estab-
lished in 1922, when Christie and Kenner successfully crystallized salts  
for two enantiomers of 6,6′-dinitro-2,2′-diphenic acid (Fig. 1a)1. At  
present, this chirality element is widely acknowledged in bioactive 
natural products and serves as a fundamental component in the func-
tionality of materials, exerting a substantial influence on the design and 
advancement of contemporary drugs and functional materials. Latent 
atropisomers have been categorized into three groups (by LaPlante and 
colleagues2) based on the rotational energy (Erot) barriers of the stereo-
genic axis. A molecule has the potential to exert atropisomerism when 
ΔErot > ~20 kcal mol−1, and axial chirality is generally stable for values 
over ~30 kcal mol−1. At elevated temperatures, rotational energy bar-
riers decrease and give rise to a conformational stability issue. Accord-
ingly, syntheses of atropisomers are usually implemented under mild 
reaction conditions. For some time, axial chirality was disregarded, 
whereas point chirality received fervent attention across a range of 
fields. This changed in 1980 when Noyori and colleagues pioneered 
the adoption of optically pure BINAP (2,2′-bis(diphenylphosphino)-
1,1′-binaphthyl) as a ligand in asymmetric metal catalysis3. This report 
shed light on the stereo-controlling ability of atropisomeric scaffolds, 
providing a fresh perspective on axial chirality. Since then, a series of  

typically atropisomeric ligands, including QUINAPs (1-(2-diphenyl
phosphino-1-naphthyl)isoquinolines) and phosphoramidites, as well 
as their derivatives, have been introduced4–6. Meanwhile, intensive 
follow-up research has also uncovered diverse axial chirality-based 
organocatalysts, such as phase-transfer catalysts7 and Brønsted acids8,9. 
These compounds have demonstrated competitive performance in 
addressing various challenges in asymmetric synthesis, leading to 
them holding a privileged position today (Fig. 1b).

Continuous evolution of the study of axial chirality has made it 
an indispensable part of modern organic synthesis and arguably a key 
discipline in asymmetric catalysis. The incorporation of axially chiral 
elements in catalytic species has become a routine and effective strat-
egy to induce or enhance enantiocontrol capability. The design and 
catalytic enantioselective syntheses of atropisomers are at the core of 
these efforts, and the research output over the past decade reflects the 
intense activity in the field. However, there are several long-standing 
issues that are hindering realization of its full potential. One of the 
challenges is the high production costs associated with certain ligands 
and catalysts, which arise from their impractical synthetic routes. Early 
efforts primarily focused on method development, diverting attention 
from the discovery of core structures. Additionally, the configurational 
instability of axially chiral compounds presents a fundamental chal-
lenge, limiting their broad application. This Review aims to outline the 
contemporary advances in atroposelective synthesis under catalyst 
control. The content is organized under three main themes, beginning 

Received: 31 July 2023

Accepted: 29 February 2024

Published online: 30 April 2024

 Check for updates

1Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China. 2Academy for Advanced 
Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.  e-mail: dingwy@sustech.edu.cn; tanb@sustech.edu.cn

http://www.nature.com/natcatal
https://doi.org/10.1038/s41929-024-01138-z
http://orcid.org/0000-0003-4262-5626
http://orcid.org/0009-0008-1590-5618
http://orcid.org/0000-0002-3430-469X
http://orcid.org/0000-0001-8219-9970
http://crossmark.crossref.org/dialog/?doi=10.1038/s41929-024-01138-z&domain=pdf
mailto:dingwy@sustech.edu.cn
mailto:tanb@sustech.edu.cn


Nature Catalysis | Volume 7 | May 2024 | 483–498 484

Review article https://doi.org/10.1038/s41929-024-01138-z

Atroposelective C–H functionalization
The ortho-aromatic C–H bond can be selectively converted into  
different functionalities via transition-metal-catalysed C–H activation, 
with the configuration of the neighbouring axis being set in the process. 
To this end, a series of prochiral heterobiaryl structures (1–3) with 
nitrogen as the directing group have been designed for metal-catalysed 
atroposelective C–H functionalization reactions by the groups of 
You15,16 and Shi17. A pyrimidyl group enabling C–H activation and the 
functionalization of indoles (4) has been reported by Li and colleagues, 
affording pentatomic biindolyls in excellent enantiocontrol under 
rhodium catalysis18. Shi and colleagues employed a transient chiral 
auxiliary chemistry to achieve palladium-catalysed C–H functionaliza-
tion of prochiral biaryl aldehydes (5) by including a sub-stoichiometric 
amount of amino acid for condensation with an aldehyde entity to 
act as a catalytic directing group and chiral ligand (Fig. 2a)19,20. The 
cooperation of electrosynthesis with palladium catalysis was used to 

with a review of synthetic strategies. To provide focus, the discussion 
here is limited to contemporary and widely applied strategies with 
high versatility and modularity. Interested readers are directed to dedi-
cated reviews10–12 and books13,14 that give comprehensive discussions 
on the various strategies available. The second section is devoted to  
an overview of how emerging synthetic tools have been used to con-
struct atropisomeric scaffolds. Finally, several atropisomeric scaffolds 
that have rarely been reviewed elsewhere will be discussed to showcase 
the intriguing findings on the exploration of frameworks.

Strategies with high versatility and modularity
Diverse synthetic strategies have been established to forge atropiso-
meric skeletons that involve atroposelective functionalization of a 
pre-existing scaffold and formation of a stereogenic axis or a cyclic sub-
unit. This section discusses selected catalytic asymmetric approaches 
that have far-reaching implications for the synthesis of atropisomers.
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Fig. 1 | Discovery and importance of axial chirality. a, The first isolated molecule that established the axially chiral phenomenon, together with selected natural 
products and functional materials with a stereogenic axis. b, Time line of representative atropisomeric ligands and organocatalysts.
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accomplish the dynamic kinetic asymmetric transformation (DYKAT) 
of prochiral biaryl aldehydes (5) or aryl-pyrroles by Ackermann and 
colleagues in 202021. Subsequently, this was utilized in the kinetic reso-
lution of racemic aryl-indoles22. Contributions have also been made by 
the groups of Cramer23 and Lassaletta24. Recently, Akiyama developed 
an enantioselective synthesis of biaryl atropisomers through C(sp3)–H 
activation, and mechanistic studies revealed that C–H activation played 
a crucial role as the rate- and enantio-determining step25. Notably, the 
more sustainable, cheaper and less toxic 3d-metal cobalt has been 
elegantly harnessed by Wencel–Delord26,27, Shi28 and colleagues to 
facilitate C–H activation and the ensuing atroposelective function-
alization with a chiral ligand.

Multicomponent reactions have received massive interest due to 
their high versatility, modularity and convergent nature. Among the 
developed multicomponent reactions, the Catellani reaction offers 
a highly convergent approach that allows ipso- and ortho-C–H func-
tionalization of aryl halides under palladium/norbornene cooperative 
catalysis29. This could circumvent the requirement for a circuitous 
and potentially challenging pre-functionalization step, delivering 
polyfunctionalized aromatic molecules selectively from alkyl or aryl 
halides with numerous terminating agents. Employment of this reac-
tion in atropisomeric synthesis was developed by Gu and colleagues30. 
A phosphine ligand (L1) bearing a point chirality and an axial chirality 
effectively induced stereocontrol during the formation of an aryl–aryl 
axis on biaryls 10 (Fig. 2b). Subsequently, a breakthrough was achieved 
by the Zhou group by adopting a chiral norbornene ligand31. In this 
protocol, an atropisomeric Pd(II) biaryl complex is generated through 
the ortho-addition of 2,6-disubstituted aryl bromide 12 on aryl iodide 
11 in the presence of a palladium catalyst and a chiral ligand NBE*-1. 
Upon the coupling of diverse terminating agents (olefins, alkyne, 
boronic acids, cyanide and ketone), axial chirality is transferred to 
the products. This method provides a highly modular access to biar-
yls 13 with an expanded range of ortho-substitution (Fig. 2c). Aiming 
to explore the axially chiral monophosphine ligand, the Song group 
developed an efficient approach to prepare atropisomeric biaryl- 
based monophosphine oxides (Fig. 2d, 14,15), with good results and 
a similar strategy32. This chemistry was also designed to access atro-
pisomers bearing a stereogenic C–N axis (Fig. 2e, 17)33 and 1,2-diaxes 
(Fig. 2f, 19)34.

Atroposelective ring-opening reactions
In 1992, Bringmann and co-workers introduced the lactone concept 
through atroposelective ring-opening of lactones 20 with a chiral 
hydride transfer agent to access enantioenriched biaryls 21. Labiliza-
tion of the C–C axis for atropisomerization is made possible by the 
bridged six-membered lactone ring (Fig. 3a,i)35. This concept was 
further popularized by various catalytic asymmetric reduction reac-
tions36,37. Alcohols and phenols were also suitable reagents to promote 
ring-opening and gave transesterification products 22 through a chiral 
amine thiourea catalysis (Fig. 3a,ii)38. Biaryls 23 could be synthesized 
through reductive amination with racemic 24 or redox-neutral amina-
tion with racemic 21. In these cases, the resulting imines interconvert 
through biaryl hemiaminal 25, and reduction occurs selectively from 
one imine intermediate (Fig. 3a,iii)39,40.

In another development, Gu’s team realized a series of copper- 
catalysed atroposelective ring-opening reactions of five-membered- 
bridged diaryliodoniums 26 with different nucleophiles. The 
o,o′-disubstitution of cyclic biaryl substrates promotes ring-opening 
to release strain and stabilizes the stereogenic axis. Regioselectivity 
is conferred by steric bias for the less hindered site (Fig. 3b,i). A range 
of reagents worked well with this chemistry, including amines (27)41, 
α,β-unsaturated carboxylic acids (28)42, thiocarboxylates (29)43,  
diarylphosphine oxides (30)44 and trifluoromethanethiolates (31)45. 
More recently, alkoxygenation with weakly nucleophilic diols was estab-
lished with borinic acid as co-catalyst, which activates 1,2- and 1,4-diols 

in the form of a boron-ate complex intermediate with enhanced nucleo-
philicity (32) (Fig. 3b,ii)46.

Recently, the long elusive organocatalytic atroposelective 
ring-opening reaction was reported by our group, offering an impor-
tant addition to this chemistry. Chiral Brønsted acid N-triflyl phospho-
ramide (C1) was identified to be effective in cleaving the Si–C bond of 
silafluorenes (33) through direct protonation of the aromatic ring. 
The addition of silanol was found to reduce dimer formation through 
silylation of biarylsilanol to afford 34. The product could be readily 
converted to other valuable biaryl structures with high enantiopuri-
ties (35,36) (Fig. 3c)47.

Organocatalytic arene umpolung for atroposelective direct 
arylation
An inspection of the chemical structures revealed the atroposelec-
tive cross-coupling of two aryl counterparts to be the most versatile  
and straightforward route. Among the established strategies, 
transition-metal-catalysed asymmetric Suzuki–Miyaura coupling of 
aryl halides (37) and aryl boronic acids (38) is one of the most well devel-
oped. Palladium-based chiral catalysts are conventionally involved in 
this type of transformation (Fig. 4a,i)48–50. To circumvent the uneco-
nomic and tedious pre-functionalization of both aryl substrates, asym-
metric dehydrogenative cross-couplings of arenes 39 and 40 were 
devised with miscellaneous transition-metal-centred chiral catalytic 
systems (Fig. 4a,ii)51,52. These coupling reactions have also recently 
been realized by 3d-metals such as iron53 and cobalt54. Nevertheless, 
their organocatalytic variant has been an unmet synthetic challenge 
for a long time. Apparently, the inversion of intrinsic nucleophilicity of 
one aryl component to electrophilicity under a chiral organocatalyst 
is the biggest obstacle for this scenario. In this context, we envisioned 
that, by introducing an electron-withdrawing nitrogen functionality 
onto the aromatic ring (42), electrophilicity could be imparted to the 
tethered arene. Favourably, a hydrogen-bonding catalyst such as chiral 
phosphoric acid (CPA)55,56 engages this entity for further activation 
and provides a suitable chiral environment for site‐ and enantioselec-
tive C–H functionalization. Additionally, cleavage of the N–X bond 
on 43 could liberate amine (44) (Fig. 4b,i). Potential candidates with 
azo (42a) or nitroso (42b) as the activating and directing group are 
displayed in Fig. 4b,ii.

This blueprint was realized in formal asymmetric nucleophilic 
aromatic substitution of C2-azo substituted naphthalenes 42a with 
indoles under CPA catalysis57. Apart from the anticipated 3-arylindole 
atropisomers 45 formed following the 1,4-addition and rearomati-
zation sequence, the smaller C2 substituent allows an intramolec-
ular addition by hydrazine, which reveals 3-aniline-indoles 46 after 
ring-opening aromatization. When treated with aromatic alcohols in 
a CPA salt complex-based system and with 2-naphthylamines in a Ni/
bis(oxazoline) system, cross-couplings proceeded smoothly to convert 
C2-azonaphthalenes into 47 and 48, respectively58. The biaryl prod-
ucts gave rise to the highly sought-after privileged scaffolds, NOBIN 
(2-amino-2′-hydroxy-1,1′-binaphthyl) and BINAM (1,1′-binaphthyl-
2,2′-diamine) after reduction. By means of CPA catalysis, carbazoles 
and hindered C3-substituted indoles coupled with azonaphthalenes 
at the nitrogen site (49,50) (Fig. 4c,i)59. Subsequently, para-C–H bond 
functionalization of azo-appendant benzenes with indoles was estab-
lished asymmetrically by our group through subtle modulation of CPA 
catalysts60. More recently, C1-azonaphthalene compounds were applied 
in this transformation with acylimidazolinone as auxiliary and N-triflyl 
phosphoramide as chiral Brønsted-acid catalyst, furnishing C4-selective 
arylated 52 in high efficiency and enantiocontrol (Fig. 4c,ii)61.

Guided by density functional theor y (DFT) studies, 
C2-nitrosonaphthalenes 42b were identified as another suitable set 
of electrophilic coupling partners62. Arylation with indole nucleophiles 
generates atropisomers 53 in the presence of an external oxidant. 
Otherwise, the nucleophilic hydroxylamine triggers an intramolecular 
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cyclization to form indole-anilines 54. Extension of this coupling para-
digm to 2-naphthols furnished NOBINs 55 in a one-pot cross-coupling/
reduction reaction (Fig. 4d).

Differently, Shi and colleagues used 2-indolylmethanols 56 that 
possess C3-electrophilicity after water elimination for CPA-catalysed 
arylation with 2-naphthols or phenols to generate 3-aryl-indoles 57.  
The gem-diaryl groups stabilize the stereogenic axis and cation inter-
mediate, while also imparting C3-regioselectivity by congesting  
the benzylic reactive site (Fig. 4e)63. They have also utilized the same 
strategy in the construction of axially chiral alkenes64.

Chiral VQM intermediate for atroposelective synthesis
Vinylidene ortho-quinone methide (VQM) species generated  
from 2-ethynylnaphthol or aniline derivatives 58 (known as aza-VQM) 
via a 1,5-proton shift are highly electrophilic (Fig. 5a)65. The prospect  
of chiral catalyst control in this process allows the generation of  
axially chiral VQMs (59) in enantioenriched form. These species are  

susceptible to nucleophilic interception or can participate in a  
formal cycloaddition to form (hetero)aryl–aryl atropisomers (60)  
via axial-to-axial chirality transfer. In 2013, this protocol was utilized 
by Irie’s team to access aryl-naphthopyrans 64 from alkynes 63, 
which occurs through an intramolecular [4 + 2] cycloaddition of VQM  
with another tethering alkyne entity. However, moderate enantiomeric 
excess (e.e.) values were observed under cinchona alkaloids catalysis66.  
The subtle modification of chiral base catalyst to quinine-derived  
thiourea (C2) by the Yan team substantially improved the enantio
control and broadened the substrate range (Fig. 5b)67. Notably, for com-
pounds 65, which contain both 2-ethynylnaphthol and 2-ethynylaniline,  
an axially chiral VQM intermediate is selectively formed from the for-
mer unit. The stereoselective intramolecular annulation offered atro-
pisomeric aryl-C2-indoles 66 in generally excellent enantiopurities68.  
In addition, naphthyl-benzocarbazoles 67 and napththyl-quinolines 
68 harbouring an aryl–aryl axis have been delivered by Irie (cinchona 
alkaloids catalysis)69 and our group (CPA catalysis)70, respectively.
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On the other hand, the addition of alkynes through a VQM 
intermediate is a rapidly evolving method to construct alkene-type  
atropisomers without formation of another aromatic ring (Fig. 5c).  
For example, Yan and colleagues have assembled atropisomeric 

sulfone-containing alkenes 69 from 1-alkynyl-naphthalen-2-ols 58 
with sodium sulfinates as nucleophiles71. Our group established the 
CPA-catalysed nucleophilic addition of VQM with aromatic alco-
hols to afford alkene analogues (70) of BINOL and NOBIN in high 
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enantiocontrol72. Since then, the scope of nucleophilic reactants has 
been intensively explored, and diverse atropisomeric alkene skeletons  
were readily constructed. This chemistry was also extensible to the 
organocatalytic difunctionalization of an internal alkyne with an 
electrophile and a nucleophile, which provides a practical approach 
to assemble alkenes bearing a vicinal diaxis (73,74) or multiaxis (75) 
(Fig. 5d)73,74. Notably, the isolation and characterization of transient 
axially chiral intermediates was recently accomplished by the Yan 
group, opening the door for the elucidation and further application of 
the VQM intermediate75. Additionally, the tetra-substituted aza-VQM 
intermediate could be generated by bifunctional sulfide (C3) cata-
lytic thiolation of ortho-alkynylaryl amines 76, as in Zhao’s report, 
which offers an attractive approach to access atropisomeric alkenes 
78 (Fig. 5e)76.

Catalytic enantioselective azide−alkyne cycloaddition (E-AAC) 
offers an efficient way to forge structurally diverse centrally chiral 
triazoles, usually involving a copper catalyst. However, this type of click 
reaction was not used in producing heterobiaryl atropisomers until 
2022. Based on VQM chemistry, success with atroposelective E-AAC 
was achieved by Xu and colleagues by using Ir(I) catalysis with chiral 
squaramide C4 as the cooperative catalyst starting from 58 (Fig. 5f)77. 
Concurrently, a catalytic system comprising a rhodium source and a 
chiral phosphoramidite ligand was disclosed by Li, Qian, Deng and 
colleagues78. In contrast, the VQM intermediate is not involved in their 
mechanistic pathway, and a hydrogen bond between the free hydroxy 
group and Rh catalyst was proposed to account for the regioselectivity.  
Soon after, a similar catalytic system featuring higher practicality, 
much broader substrate scope, lower catalyst loading as well as a faster 
reaction rate was provided by the Cui group79.

Strategies with emerging synthetic tools
Over the past decade, photocatalysis that exploits abundant visible 
light as a sustainable power source has become an indispensable syn-
thetic tool in conquering challenging transformations via a radical 
course. The synergy of photocatalysis with asymmetric metal catalysis 
or organocatalysis provides an effective route to forge useful chiral  
molecules. Initial efforts by Katsuki and colleagues were used to  
accomplish the asymmetric aerobic oxidative coupling of 2-naphthol80. 
However, only moderate atroposelectivities were obtained with a (NO)
Ru(II)–salen complex under irradiation with visible light. Success in 
the construction of axially chiral skeletons arrived in 201881. In Bach’s 
pioneering work, enantioenrichment of allenes was achieved by irradia-
tion with visible light in the presence of bifunctional thioxanthone as 
an energy transfer-based photosensitizer and catalyst responsible for 
atroposelective induction. In 2022, Xiao, Lu and colleagues revealed 
a metallaphotoredox system that merges cobalt catalysis and chiral 
bisphosphine ligand L2 for the dynamic kinetic asymmetric transfor-
mation of heterobiaryls 8082. Reaction with 1,4-dihydropyridine deriva-
tives 81 as coupling partners and 2,4,5,6-tetra-9H-carbazol-9-yl-1,3
-benzenedicarbonitrile (4CzIPN) as photocatalyst delivered highly 
enantioenriched 82 in good to excellent yields. The formation of cobalt 
complex Int-1 bearing a five-membered ring enabled the enantioen-
richment process via axial rotation uniting chiral ligands (Fig. 6a,i). 
Recently, this strategy was applied in the dynamic kinetic reductive 
conjugate addition of acrylates83 and desymmetrization of biaryl 
dialdehydes84 to access atropisomeric structures 83–85 (Fig. 6a,ii). 
In addition, the involvement of organocatalysis in photocatalytic 
atroposelective synthesis was achieved by the same group (Fig. 6b)85. 
Utilizing redox-active ester 87 as a radical precursor and C5 as a chiral 
source, compounds 88 containing both axially and centrally chiral ele-
ments were produced with excellent diastereo- and enantioselectivity 
through a Minisci reaction.

Electrosynthesis has been widely recognized as another green 
synthetic tool for molecular functionalization. The merging of elec-
trosynthesis and asymmetric catalysis offers an alternative strategy 

to synthesize important chiral structures, including atropisomers86. 
In this realm, pioneering work was reported by Ackermann and col-
leagues that involved cooperation with palladium catalysis21,22. In 2023, 
application of electro-oxidative cobalt catalysis in aryl C–H function-
alization and a N–H annulation cascade reaction between benzamides 
89 and 4-hydroxyalkynoates 90 was realized by the same group to 
access N-aryl atropisomers 9187. Additionally, allenes were found to 
be suitable candidates for this type of transformation (Fig. 6c)88. By 
incorporating cathodic reduction into nickel catalysis, Mei’s group 
realized the asymmetric homocoupling of aryl bromides (93) with 
chiral oxazoline ligands (L4 and L5). Notably, the use of electric current 
as a reducing agent gave the enantioenriched C2-symmetric biaryls 
94 in much higher yields than when using the conventional reductant 
manganese (Fig. 6d)89.

Emerging atropisomeric scaffolds
Strategies for atroposelective synthesis have seen creative extension  
in various ways, enabling more efficient access to privileged biaryl-type 
scaffolds. Besides expansion in the diversity of peripheral substituents, 
increased knowledge and more powerful chemical tools are laying 
the groundwork for the exploration of core frameworks. This section 
illustrates advancements of the field towards tackling the synthesis 
of unconventional atropisomers that were previously intractable by 
catalytic chemical tools.

Axially chiral alkenes and stereogenic axis involving 
heteroatom(s)
Compared to biaryl-type structures, the development of axially chiral 
alkenes is more recent. This is largely attributed to the lower rigidity 
of the axis that connects an arene and a vinyl unit, posing issues for 
stereocontrol and the preservation of configurational stability. Unlike 
cyclic alkenes, which bear structural resemblance to biaryl cores, the 
tactical design of steric elements is crucial for the development of acy-
clic congeners. There is a general absence of methods that construct a 
stereogenic axis involving a heteroatom as efficiently, except the C–N 
analogues90. One limiting factor might be the inherently low configura-
tional stability of such an axis, as can be gauged from the bond lengths 
(Fig. 7a). Undoubtedly, the past two decades have witnessed a surge in 
interest in the atropisomerism originating from the restricted rotation 
around a C–N bond. This intriguing theme has already been intensively 
discussed several times very recently, and readers are referred to other 
reviews for specialized perspectives91–93.

Considering that an acyclic alkene could partially retain axial 
chirality, the Tan group embarked on pursuing a catalytic asymmetric  
strategy to access such atropisomeric alkene structures through 
nucleophilic addition to alkynals94. Their study commenced with evalu-
ation of the configurational stabilities of several alkenes in terms of 
both rotation barriers and half-lives to identify a suitable starting point. 
The choice of nucleophile had a major effect on the rotational barrier, 
with the steric influence imposed at the α-position to alkene being most 
decisive. Based on these data, Michael addition of 1,3-dicarbonyls to 
alkynals (95) was successfully implemented to deliver atropisomeric 
alkenes 97 (Fig. 7b). Alkynal is activated by an amino catalyst as iminium 
ion, and Michael addition yields stereochemically defined allenamine 
Int-1. Isomerization to iminium ion Int-2 and hydrolysis reveals  
axially chiral alkenes. Notably, cyclic atropisomeric alkenes were  
forged by Gu and colleagues through enantioselective palladium- 
catalysed cross-coupling of aryl bromides and hydrazones95. In the  
work by Smith and colleagues on the catalytic enantioselective synthe-
sis of atropisomeric biaryls by a cation-directed O-alkylation, analo-
gous structures were isolated as the key intermediates96. Since then, 
continuous efforts have been devoted to this sub-branch of the axial 
chirality realm97.

Scaffolds featuring a chiral C–B bond represent a class of atropiso-
mers for which catalytic asymmetric access has not been established. 
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This paucity was recently addressed by Song and colleagues, as well as 
our works. They detailed the atroposelective Suzuki–Miyaura boryla-
tion of aryl halides with unsymmetrical diboron reagents 98 to assem-
ble arylborons 99, which derive their optical activity from a C–B axis 
(Fig. 7c)98. P-chiral monophosphorus ligand L6, previously studied 
for this type of reaction, was utilized, and reductive elimination of  
the transmetallated intermediate was proposed to be stereodeter
mining. Very recently, two alternative strategies were developed by  
the same group through tetracoordinate boron-mediated dynamic 
kinetic asymmetric cross-coupling99 and atroposelective kinetic 
C–H functionalization100 under palladium catalysis. Our approach 
to the catalytic enantioselective construction of axially chiral B-aryl- 
1,2-azaborines 101 that contain a stereogenic C–B axis involved a 
CPA-promoted desymmetrization of 1,2-azaborine derivatives with 
diazodicarboxamides101.

Construction of N–N axial chirality could be favoured by the 
shorter bond length and repulsive interaction between the lone pairs 
of the two nitrogen atoms. However, a low rotational barrier could 
emerge from deplanarization of the two N-containing planes upon 
rotation. A recent study by Houk, Lu and colleagues showed that sta-
ble N–N axial chirality could be present in 1-aminopyrroles (103) and 
3-aminoquinazolinones, in their atroposelective synthesis of these 
compounds through a quinidine-catalysed N-allylic alkylation reaction 
(Fig. 7d)102. The axial disposition of the existing N–N axis is determined 
following introduction of an allyl group, which also hinders further 
rotation of the chiral axis. This hot topic has been well reviewed recently 
by the groups of Lu103 and Bencivenni104, so details of the advances will 
not be presented here.

Heteroatom tethered diaryls could display apparent axial 
chirality when sterically hindered substituents are installed at the 
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ortho-positions of the C–X bond. A series of investigations have been 
carried out by the Clayden group to reveal the atropisomerism in diaryl 
ethers (104), sulfides (105), sulfoxide (106) and sulfones (107)105,106. 

They also realized the asymmetric synthesis of diaryl-ether-type atro-
pisomers 109 by biocatalysis107. In 2023, Zeng, Zhong and colleagues 
described the atroposelective synthesis of diaryl ethers 111 bearing  

R

R

O

tBu

OHC
NHAr

O tBu
RHN NHR

Me

N

CO2R

H
N

RO2C

N

S

O

Ar
H

O

111 112

115

O

tBu

OHC CHO

110

C7 (20 mol%)

3 Å MS, Et 2O, –50 °C

ArNH2 (1.0 equiv.)

HE (1.0 equiv.)

O

O
P

O

OH

Ar

Ar

C7, Ar = 9-anthryl

C8, Ar = 1-naphthyl
O

O

N

H

X

O

O

N

H

113

C8 (10 mol%)
NXS (1.1 equiv.)

Toluene/hexane (1/1)
4 Å MS, 24 °C, 12 h

114

Up to 85%, 95% e.e.

Up to 95%, 96% e.e.

e
O S S

O
SO

O

104 105 107106

MeO OMe

P

O
Bn

tBu

L6

N

N

CO2R
O

H

O

Quinidine (10 mol%)

CHCl3, 25 °C
N

N

CO2R
O

O

CO2R

102 103

d

H
N

EtO2C CO2Et
HE

C6, Ar = 4-tBu-C6H4

O

O

Ar

P
O

OH

Ar

X

Ar

N
B

N

Bpin

Pd(OAc)2 (4 mol%)
L6 (6 mol%), 1,4-dioxane
K3PO4 (2.5 equiv.), 30 °C

98

N
B

N

Ar

99

B
HN

OH

Ar

Ar

N

N

N
H

O

O
R

100

B
HN

OH

Ar

Ar
C6 (10 mol%)

CHCl3, r.t., 10 min

Up to 95%, 98% e.e.

N

NN

OO

R

Up to 99%, 97% e.e.
101

a

Y

X

More challenging to control atroposelectivity

Biaryl X–Y axisCyclic alkeneAcyclic alkene

Less steric-hindrance of scaffold Lower rigidity of stereogenic axis

(i) (ii)

b

Ar = 3,5-(CH3)2-C6H3

95

Nu
CHO

O

H
Nu N

R
Nu N

RH

Int-1 (allenamine) Int-2 (E/Z-selective)

+

97
N
H

Ar

Ar

OTIPS

Nucleophile

c

Up to 96%, 95% e.e.

CO2R
BocO+

O

tBu

R R

O

tBu

OHC CH2OH

109 (P/M selective)

R = CHO
ketoreductases

108

R = CH2OH
galactose oxidase

Ac
R

Ac

CN
R

CN

H

or

Up to 99%, 95% e.e.

Hydrolysis

*

96

Fig. 7 | Axially chiral alkenes and stereogenic axis involving heteroatom(s).  
a, Challenges in the control of atroposelectivity in the modified structures  
of biaryls. b, Catalytic asymmetric synthesis of axially chiral acyclic alkenes.  
c, Asymmetric syntheses of atropisomers bearing a C–B stereogenic axis.  

d, Asymmetric synthesis of atropisomers with a N–N stereogenic axis. e, Catalytic 
atroposelective syntheses of axially chiral diaryl ethers and their derivatives. 
P/M, plus (+)/minus (–) configuration; HE, Hantzsch esters; NXS, N-halogenated 
succinimides.

http://www.nature.com/natcatal


Nature Catalysis | Volume 7 | May 2024 | 483–498 493

Review article https://doi.org/10.1038/s41929-024-01138-z

a dual O-aryl axis through CPA-facilitated desymmetrization of 
Clayden’s achiral dialdehydes108 with a Hantzsch ester as hydride  
donor. Concurrently, diamine-substituted diaryl ethers were used to 

construct this type of atropisomer (112) via electrophilic amination 
with azodicarboxylates under CPA catalysis109. Moreover, N-aryl amino-
quinones (114, 115), as oxidative precursors of diaryl amines, have been 
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obtained atroposelectively by organocatalysis. Mechanistic studies have 
suggested that the intramolecular N–H···O/S hydrogen bond is crucial  
for the stability of the C–N axis (Fig. 7e)110,111.

Atropisomers with a stereogenic C(sp3)–X axis or multiple axes
Atropisomerism about C(sp2)–C(sp3) bonds has received extensive 
interest from the synthetic chemistry community112. However, the cata-
lytic enantioselective synthesis of conformationally stable atropiso-
mers bearing such a stereogenic axis remained in its infancy until Sparr’s 
pioneering work, where interlocked 117 displaying an uncommon steri-
cally congested C(sp2)–C(sp3) stereogenic axis with six pronounced 
rotational barriers (instead of two) was achieved through Rh-catalysed 
[2 + 2 + 2] cyclotrimerization (Fig. 8a,i)113. This reaction was realized 
by using trialkynyl ethenoanthracene substrates 116, outfitted with a 
bulky adamantyl group and an interdigitating keto functionality. The 
replacement of substitution was possible at the C(sp3) component. 
They also showed that, with distinct ligand systems, four of the six pos-
sible stereoisomers could be selectively assembled. Recently, the same 
team achieved the asymmetric synthesis of atropisomeric sulfones 119  
with a stereogenic C(sp3)–S axis under oxidation conditions from 
rotationally dynamic sulfoxide 118 with chirality on the sulfur atom, 
enriching the library of this type of structure114. Conformationally stable 
C(sp2)−C(sp3) atropisomers 120 were also synthesized by Jørgensen 
and colleagues via an organocatalytic enantioselective cyclization 
(Fig. 8a,ii)115. The prospect of controlling the resulting higher-order 
stereogenicities with a chiral catalyst uncovers an unexplored domain 
of atroposelective synthesis that will benefit the design of functional 
molecular systems.

The topology resulting from the existence of multiple stereo-
genic axes in a single architecture may establish a range of applica-
tions in asymmetric catalysis as well as functional materials. This is 
stimulating the evolvement of the field towards the construction of 
multiaxis systems116. Based on the established atroposelective aldol 
cyclization strategy, Sparr and colleagues prepared enantioenriched 
1,2-ternaphthalene carbaldehyde (aS)-122 with a stereogenic C–C 
axis from ketoaldehyde 121 (Fig. 8b)117. After synthetic elaboration 
to generate another aldol cyclization precursor and in situ oxida-
tion, substrate-controlled atropo-diastereoselective aldol conden-
sation yielded 1,2-diaxes compounds 123 and 124 with 21:79 d.r. A 
similar strategy was utilized by them to access all four stereoisomers 
of atropisomeric two-axis systems with cinchona alkaloid-based chi-
ral ion-pairing catalysts in 2022118. Miller and colleagues inventively 
designed a two-fold dynamic kinetic resolution synthesis to fabricate 
1,4-diaxis terphenyl atropisomers 127 with the signature peptide cata-
lysts119. Ring-opening/transesterification of lactone 125 is catalysed 
by strongly basic guanidine peptide catalyst C9 with the use of benzyl 
alcohol. The revealed phenol group facilitates C10-catalysed para-C–
H chlorination to set the second stereogenic axis. Rodriguez, Bonne 
and co-workers ingeniously utilized two-fold central-to-axial chirality 
conversion for the synthesis of such types of compounds enabled by 
oxidative aromatization120. With chiral squaramide-tertiary amine C11 
as the bifunctional catalyst, bidirectional domino bisheterocycliza-
tion between chloronitroalkenes 128 and naphthalene-2,6-diol or 
naphthalene-2,3-diol proceeded smoothly twice to generate the S- (129) 
and E-shaped (130) bis-benzofuran atropisomeric oligoarenes featur-
ing two distal C–C stereogenic axes in generally excellent enantiocon-
trol. Furthermore, simultaneous control of two atropisomeric elements 
could be realized by a one-reaction–double-stereoinduction strat-
egy121. Organocatalytic atroposelective difunctionalizations of internal 
alkynes involving chiral VQM intermediates have been elegantly used in 
the assembly of multiaxial frameworks by Yan’s team73,74. More recently, 
a one-step synthesis of atropisomeric indoles (133) bearing vicinal 
C–C and C–N diaxes was carried out by Wencel–Delord, Ackermann 
and colleagues through double cobalt-catalysed imine-directed C–H 
activation starting from N-arylated indoles 131122. In a report by Shi and 

colleagues, this class of diaxial scaffolds was forged by cobalt-catalysed 
atroposelective C–H annulation reactions123.

Conclusions and outlook
In line with progress regarding asymmetric catalysis, atroposelective 
synthesis has made substantial strides in the past decade. A variety of 
enabling strategies with broad applicability have emerged, offering 
efficient access to valuable scaffolds. This, in turn, could reduce the 
cost and resources needed to convert these scaffolds into ligands and 
catalysts. The increased availability of these chirality-inducing agents 
will further drive advancements in asymmetric synthesis. However, 
practical access to certain privileged scaffolds remains elusive, neces-
sitating ongoing innovation. Despite the emergence of electro- and 
photochemical synthesis, their compatibility with chiral catalysts poses 
a major challenge.

Recent progress in catalytic atroposelective synthesis is also  
serving as a platform to broaden the chemical space of atropisomers, 
as evidenced by the thriving development of axially chiral alkenes and 
the unveiling of unconventional atropisomers.

Finally, future developments in this emerging field are primarily 
manifested in three directions. First, investigations into atropisomeric 
backbones with stereocontrol potential continue to be a major focus. 
This exploration may entail the creation of multiaxial scaffolds that 
display distinct and rigid chemical topologies, and the inclusion of 
heteroatoms on these scaffolds as interaction sites holds promise 
for the development of potent ligands or organocatalysts. Second, 
in the quest for the more practical construction of privileged atropi-
someric skeletons, there is a growing interest in the exploration and 
development of innovative strategies and chemical methodologies. 
Leveraging the power of photocatalysis, electrochemical synthesis or 
a combination of both holds great promise as a practical and effective 
synthetic approach to overcome this long-standing challenge. Finally, 
to gain a deeper understanding of the underlying factors that influence 
rotational barriers and to explore broader applications in medicinal 
chemistry and materials science, computational calculations and the 
emerging field of artificial intelligence chemistry offer valuable tools 
for advancement.
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