
Article https://doi.org/10.1038/s41467-025-56838-2

Organocatalyzed diastereo- and
enantioselective synthesis of N–N
atropisomeric isoindolinones bearing
central chirality

Xingguang Li 1,5 , Xin-Ze Wang1,5, Boming Shen2,5, Qian-Yu Chen1,
Huijing Xiang3, Peiyuan Yu 2 & Pei-Nian Liu 1,4

Methods for catalytically constructing of N–N axially chiral scaffolds have
garnered significant attention since such compounds are widely present in
natural products, bioactive molecules, and organic materials. Herein, we
report a highly diastereoselective and enantioselective organocatalyzed [4 + 1]
annulation method for synthesizing diverse valuable isoindolinones that
possessing N–N axial and central chiralities. This methodology uses a chiral
phosphoric acid as a bifunctional catalyst to promote a cascade sequence
involving two nucleophilic additions, dehydration, and dearomatization pro-
cesses. Control experiments and DFT calculations revealed a possible
mechanism in which the stereoselectivity-determining step is likely to involve
the irreversible formation of a hydroxy biaryl intermediate. Additionally,
preliminary biological activity studies showed that some of these N–N axially
chiral isoindolinones have potential in suppressing tumor-cell proliferation.

Catalytic enantioselective synthesis of atropisomers has gained sub-
stantial attention over the past few years owing to its great potential in
drug discovery, catalyst/ligand design and functional material
development1–7, with significant achievements reported for the
syntheses of C–C and C–N axially chiral compounds7–26. In sharp con-
trast, studies intoN–Natropisomers and their syntheses remain largely
underdeveloped and challenging, presumably due to the relatively low
rotational barriers associated with N–N bonds. Although the N–N
chiral axis is widely present in natural products, bioactive molecules,
and organicmaterials27–33, the Lu group first reported the construction
of N–N atropisomers in 202134. Since then, several strategies have been
established for the construction of N–N atroposelective scaffolds
(Fig. 1a)35–48. Organocatalyzed N–H alkylation and acylation reactions
have been developed to access 1-aminopyrroles and

3-aminoquinazolinones36–39, while, Liu realized the synthesis of N–N
bispyrroles through the use of Cu-catalyzed desymmetric
Friedel–Crafts alkylation chemistry40. In addition, asymmetric annula-
tion chemistry involving the de novo formation of aza-arenes41–45, and
the C–H functionalization of pro-chiral N–N biaryls also provide facile
access to N–N chiral bisindoles and N-pyrrolylindoles46,48. More
recently, Li and Niu independently developed C–H activation/annula-
tion for the atroposelective synthesis of N-aminoisoquinolinone49,50.
Despite these advances, the development of methods for accessing
novel N–N axially chiral scaffolds in a facile manner remains highly
demanding yet challenging.

In recent years, the catalytic enantioselective construction of
centrally chiral atropisomers has become an emerging field because it
offers a significant opportunity to expand potential applications by
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integrating new properties into atropisomers51–53. In sharp contrast to
the widely explored multichiral C–C and C–N atropisomers, con-
structing N–N atropisomers with central chirality remains largely
undeveloped (Fig. 1a)54,55. The generation of more than one chiral

element in the catalytic process presents formidable challenges for
both diastereo- and enantio-control. Bencivenni recently reported
chemistry for the indirect synthesis of atropoisomeric hydrazides via a
one-pot sequence involving two organocatalytic cycles54. However,

Fig. 1 | Facile synthesis of unprecedented N −N atropisomers and our design.
a Status of catalytic construction of N −N atropisomers. b Concept of our design
for catalytic synthesis of N −N atropisomeric isoindolinones bearing central

chirality. c This work: synthesis of isoindolinones possessing N −N axial and central
chirality. CPA chiral phosphoric acid, E electrophile.
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direct approaches that provide highly stereoselective access to atro-
pisomers bearing N–N axial and central chiralities appear to be
unprecedented, despite being highly attractive.

On the other hand, isoindolinone motifs form the core structures
of a variety of natural products and pharmacologically relevant
molecules56–58. We recently became aware of a report detailing a facile
access to isoindolinones by N-capping primary amines with
2-acylbenzaldehydes59–61; this transformation was assumed to involve
an acid-promoted condensation-tautomerization cascade. In light of
this stimulating work and recent advances in stereocontrol catalysed
by chiral phosphoric acids (CPAs)11–14,62–65, we envisaged the possibility
of synthesizing N–N atropisomers by harnessing asymmetric [4 + 1]
annulation chemistry involving bulky hydrazine and an ortho-formyl-
benzophenone in which contiguous axial and central chiralities are
established through a CPA-catalyzed aromatization and dearomatiza-
tion cascade process (Fig. 1b). In this strategy, 2-acylbenzaldehydes
and hydrazines are used as 1,4-dielectrophiles and 1,1-dinucleophiles,
respectively. A CPA is a suitable bifunctional catalyst that can promote
sequential double nucleophilic additions and dehydration to generate
reactive hydroxyisoindoline intermediate III, which is prone to asym-
metric tautomerization (Path I). Another possible scenario involves the
use of electrophilic reagents or species that can potentially react with
III in an asymmetric dearomatization manner to furnish a N–N atro-
poisomer with a quaternary stereocenter (Path II). Herein, we present
efficient chemistry for the synthesis of N–N atropoisomeric iso-
indolinones involving a highly diastereo- and enantioselective [4 + 1]
annulation reaction (Fig. 1c). This transformation not only represents
the first highly stereoselective and catalytic method for constructing
centrally chiral N–N atropisomers, but also provides access to a new
N–N atropoisomer family members that are potentially biologically
active.

Results
Reaction development
To test our hypothesis, we chose 2-acyl-benzaldehyde 2a as the 1,4-
dielectrophile, N-aminoindole 1a as the dinucleophile in view of its
good nucleophilicity as well as the wide existence of axially chiral
indole scaffolds in bioactive compounds and natural products
(Table 1). To our delight, BINOL-derived CPA (R)-A1 successfully cata-
lyzed the expected asymmetric aromatization and tautomerization
processes, to afford the N–N axially chiral isoindolinone 3a in 33%
yield, 25% ee, and 10:1 dr (entry 1). We next examined various BINOL-
and SPINOL-derived CPA catalysts bearing aryl substituents with
varying electronic properties and steric effects (entries 2–9). Among
these, (S)-A4 was identified as the optimal one, affording 3a with 53%
yield, 91% ee, and 13:1 dr (entry 4). Solvent screening (see the Sup-
plementary Information for details) showed that o-xylene and PhCl
performed competitively, whereas DCE led to a sharp decrease in ee,
albeitwith a higher yield (entries 10–12). Toluenewasdetermined tobe
the best solvent. Moreover, an enhanced yield and a slightly higher ee
were obtained by decreasing the temperature to –20 °C (entry 13).
Finally, reducing the catalyst loading to 5mol% improved the yield to
73%, along with 93% ee and >20:1 dr (entry 14). It is worth mentioning
that by-product 3a’ was observed in yields of less than 10% in these
optimization studies (see the Supplementary Information for
details)66.

Substrates scope exploration
Having identified the optimal conditions (entry 14, Table 1), we next
examined the scope of the asymmetric [4 + 1] annulation reaction
(Fig. 2). A wide range of N-aminoindoles 1 bearing substituents with
different electronic properties at the C5, C4, and C3 positions
exhibited good reactivities in this reaction, with products 3a–3k
formed in yields of 54–77% with excellent enantioselectivities and
diastereoselectivities (89–98% ee, >20:1 dr). Other ester and even

amide groups at the C2 position of the indole ring were also toler-
ated, to afford 3 l and 3m in moderate-to-good yields and high
stereoselectivities. To further broaden the substrate scope, we also
examined N-aminopyrroles. To ensure that a sufficiently rotation-
ally restricted N–N axis was generated, we initially examined the use
of 2,4-disubstituted N-aminopyrrole 1n. Gratifyingly, the desired
product 3n was efficiently formed (64% yield, >99% ee, >20:1 dr)
using (R)-C2 as the catalyst. Moreover, multi-substituted N-amino-
pyrroles also performed well to afford 3o and 3p. In addition, var-
ious ester units were well tolerated in this system, with 3q–3t
produced in good yields and excellent stereoselectivities (56–72%
yield, 94–96% ee, >20:1 dr). The absolute configurations of 3i and 3n
were assigned to be (RN-N, SC) and (RN-N, RC), respectively, by X-ray
crystallography.

We next studied the feasibility of asymmetric [4 + 1] annulation
chemistry involving different 2-acylbenzaldehydes. A variety of
2-acetylbenzaldehydes bearing substituents with different electronic
properties at the C4–C6 positions reacted smoothly with 1a to highly
efficiently and stereoselectively afford N–N axially chiral iso-
indolinones 3u–3aa (57–74% yield, 88–99% ee, >20:1 dr). Changing of
the methyl group to n-propyl did not significantly affect the efficiency
or stereoselectivity of the reaction.

In addition, we also attempted to construct a contiguous N–N axis
and quaternary stereocenter by harnessing an appropriate electro-
phile to trap the in-situ generated hydroxyisoindoline intermediate III
in presence of a CPA; however, our efforts were unsuccessful. The enol
species significantly favored tautomerization over nucleophilic addi-
tion in the acidic system. Interestingly, N-aminoindole 1 bearing a
bulky CO2

iPr or CO2
tBu ester moiety at the C2 position, underwent an

unexpected condensation and oxidative asymmetric dearomatization
(Fig. 3). This transformation predominantly delivered N–N axially
chiral isoindolinonyl hydroperoxide 4a or 4b bearing a quaternary
stereocenter with excellent stereoselectivities (92–97% ee, >20:1 dr).
The structure and absolute configuration of 4b were confirmed by
X-ray crystallography. We subsequently expanded the scope of this
chiral isoindolinonyl hydroperoxide-forming chemistry;
2-acylbenzaldehydes bearing either electron-donating or electron-
withdrawing groups performed well in this transformation, to highly
efficiently yield 4c–4 f with excellent stereoselectivities. A n-propyl or
aryl substituent was well tolerated, rendering products 4g–4k with
high efficiency (56–64% yields, 85–96%ee and>20:1 dr), irrespective of
the electronic nature or position of the substituent on the phenyl ring.
The protocol also tolerated 5-methyl- and 5-bromo-substituted N-
aminoindoles, furnishing 4l–4o in moderate-to-good yields with
excellent stereocontrol (94–98% ee, >20:1). Also, 1 y, which is derived
from (–)-borneol, was a suitable substrate for preparing 4p, albeit in
notably lower yield.

Moreover, the chiral products 3p, 3 u, 4 f and 4j were stirred in
toluene at 110 °C for 12 h. Such four compounds could be recovered in
high yields, with high enantioselectivities and diastereoselectivities
retained, which indicated that the N–N axially chiral isoindolinones
have high chemical stability and configurational stability (see the
Supplementary Information for details).

Synthetic applications and mechanistic studies
To further highlight the synthetic practicality and utility of this cata-
lytic method, we performed scaled-up experiments and further
transformed the chiral products (Fig. 4). 1e was reacted with 2a, while
1o was reacted with 2a, each on a 1mmol scale, with products 3e and
3n obtained without obvious erosions in yield or stereoselectivity
(Fig. 4a, b). In addition, selective C3-bromination of the pyrrole ring of
3n proceeded well to form 3p, which underwent further Suzuki-
coupling with minimal erosion of enantiopurity (Fig. 4c). The ester
substituent in 3nwas readily converted into a carboxyl group, with the
high ee of the starting material maintained.

Article https://doi.org/10.1038/s41467-025-56838-2

Nature Communications |         (2025) 16:1662 3

www.nature.com/naturecommunications


A series of control experiments were carried out to gain some
insights into the reaction mechanism (Fig. 5). First, phthalaldehyde
was reacted with 1e to form the desired product 7, whereas the 1,2-
diacetylbenzene reacted with 1e to afford a complex mixture with
no cyclized compound detected (Fig. 5, eq 1 and 2), which indicates
that dehydration is essential for the [4 + 1] annulation reaction.
Moreover, treating side product 3a’ with H2O (1 equiv.) under
typical conditions did not afford 3a (Fig. 5, eq 3), which suggests
that 3a’ is not a reaction intermediate. Interestingly, replacing the
CPA catalyst with achiral diphenylphosphoric acid provided

racemic products 3i and 3n with excellent diastereoselectivities
(Fig. 5, eq 4 and 5). In addition, we treated 4 d’ under the standard
conditions to shed light on the formation of hydroperoxide; 4 dwas
not formed under these conditions, thereby excluding the invol-
vement of a direct oxidation pathway (Fig. 5, eq 6). Some deuterium
experiments were conducted (see the Supplementary Information
for details). We introduced RPA1-D to the reaction of 1a and 2a,
providing product 3a in 53% yield with 24% deuterium incorpora-
tion. The result indicates that CPA works as an acid and proton
source in the reaction for 3a.

Table 1 | Optimization of the reaction conditionsa

Entry Catalyst Solvent Yield (%)b ee (%)c drd

1 (R)-A1 Toluene 33 −25 10:1

2 (R)-A2 Toluene 23 −7 17:1

3 (R)-A3 Toluene 54 −26 12:1

4 (S)-A4 Toluene 53 91 13:1

5 (R)-B1 Toluene 56 −22 12:1

6 (R)-B2 Toluene 60 −9 10:1

7 (R)-B3 Toluene 42 −40 15:1

8 (R)-C1 Toluene trace ND ND

9 (R)-C2 Toluene trace ND ND

10 (S)-A4 DCE 63 28 8:1

11 (S)-A4 o-Xylene 50 89 10:1

12 (S)-A4 PhCl 51 89 10:1

13e (S)-A4 Toluene 65 92 >20:1

14e, f (S)-A4 Toluene 73 93 >20:1

15e, g (S)-A4 Toluene 61 91 >20:1

 
aReaction conditions: 1a (0.1mmol), 2a (0.05mmol), catalyst (10mol%), toluene (0.5mL).
bIsolated yields are provided.
cThe ee values were determined by chiral HPLC.
dDiastereomeric ratios (dr) were determined from 1H NMR of the isolated product.
eReaction performed at −20 °C.
f5 mol% of (S)-A4 was used.
g2.5mol% of (S)-A4 was used. DCE, 1,2-dichloroethane; PhCl, chlorobenzene.
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Density functional theory studies
We used density functional theory (DFT) calculations to model the
formation of isoindolinone 3a by the reaction of hydrazine 1a with
2-acylbenzaldehyde 2a to better understand the mechanism and key
steps responsible for the observed stereoselectivity. As shown in
Fig. 6a, the first addition of the amino group of 1a to the aldehyde
reversibly generates racemic intermediate I, which is 1.4 kcal/mol
higher in energy than the reactants. The second addition to the ketone
moiety forms intermediate II, which contains two chiral centers and
one chiral axis. Consequently, eight stereoisomers are possible. The
relative energies of the four diastereomers range from −3.5 to
−0.6 kcal/mol (Fig. 6b). The subsequent dehydration and

tautomerization, which generates intermediate III and product 3a,
respectively, are highly exergonic and irreversible. The calculated
rotational barriers for intermediates II, III, and 3a are shown in Fig. 6c.
The irreversible formation of intermediate III is highly likely to be the
stereodetermining step owing to the calculated high barriers, leading
to the formation of only one major enantiomer of III. The exact pro-
cess by which the chiral phosphoric acid catalyst facilitates this step
and controls the stereoselectivity is currently being explored in our
laboratories.

Additionally, wepropose a plausiblemechanism for the formation
of products 3 and 4 based on our experimental observations and the
DFT calculations discussed above, as well as literature precedent
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Fig. 8 | Anticancer performance assessment. a–c Cell viability of compounds 3a,
3n, and 4a (n = 5 biologically independent samples). d–f Confocal images of 4T1
cells stainedwithDCFH-DA and calcein-AM/PI after treatmentwith various doses of

compounds 3a, 3n, and 4a. g–i Flow cytometry analysis of apoptotic cells after
treatment with different concentrations of compounds 3a, 3n, and 4a.

Article https://doi.org/10.1038/s41467-025-56838-2

Nature Communications |         (2025) 16:1662 8

www.nature.com/naturecommunications


(Fig. 7)40–54,67,68. The process begins with acid-promoted addition and
dehydration to form intermediate A, which tautomerizes by protona-
tion at the Re face of the hydroxypyrrole-ring plane to give product 3.
Alternatively, it is proposed that the oxidative dearomatizaion is
initiated by the removal of a proton and the triplet O2 is more likely to
oxidize the generated anion A’ to a radical species B through a single-
electron transfer (SET) process67,68. Subsequently, the residual super-
oxide radical anion attacks the C4 position of the pyrrole ring of
intermediate B from the Si face to form C, which is finally protonated
to afford product 4. Preliminary results from DFT-calculated ener-
getics suggest that this mechanism is feasible. The theoretical result
indicated that the deprotonated anion 3b-4 is much easier to be oxi-
dizedby triplet oxygen through a SETprocess to generate radical3b-2,
which is endergonic by 11.0 kcal/mol. The subsequent addition of the
superoxide radical anion to radical 3b-2 is highly exergonic (-31.0 kcal/
mol), which provides the driving force for the whole process. More-
over, wehave performed additional DFT calculations to investigate the
thermodynamic preferences for the two types of products (see the
Supplementary Information for details). The preliminary results indi-
cate that the formation of 3a (Re face) is thermodynamically preferred.
In contrast, the observed product (4b) for the peroxidation (Si face) is
less stable than the minor diastereomer 4b-1, which suggests that the
CPA catalyst is likely involved in the peroxidation step.

Anticancer performance evaluation
Finally, we were intrigued by the potential biological activities of the
synthesized enantioenriched N −N atropisomers. Isoindolinones
exhibited various biological activities, including anticancer, anti-
bacterial, antiviral activities, and have been extensively studied as key
core scaffolds for diverse drug candidates69–73. Therefore, it is of cru-
cial significance to assess the antitumor performance of our synthe-
sized N −N axially chiral isoindolinones, as shown in Figs. 2, 3. Cell
counting kit-8 (CCK-8) assay was used to preliminarily screen the via-
bility of 4T1 cell after treatment with a series of products 3 and 4. The
results of CCK-8 illustrated that compounds 3a, 3n, and 4a partially
inhibited tumor-cell growth, with the cell viabilities of 66.5%, 56.8%,
and 53.1% at the concentrationof 50μM, respectively (Fig. 8a–c). These
preliminary results shown that our synthesized N −N axially chiral
isoindolinones have potential in inhibiting tumor-cell growth.

Generally, overproduction of reactive oxygen species (ROS) is a
key marker in the early stage of apoptotic cells. 2’,7’-dichlorodihy-
drofluorescein diacetate (DCFH-DA) was utilized as the ROS fluor-
escent probe to assess the intracellular ROS levels after diverse
treatments. As displayed in Fig. 8d–f, the confocal images illustrated
that the green fluorescence signals of ROS increased with elevating
doses of compounds 3a, 3n, and 4a, indicating the effective apoptosis
induction. Furthermore, 4T1 cells were treated with increasing con-
centrations of these compounds, and then labeled with calcein acet-
oxymethyl ester (calcein-AM) and propidium iodide (PI) to visualize
live and dead cells. After treatment with 50 µM of 3a, 3n, and 4a, a
distinct red fluorescence signal of PI was observed in 4T1 cells, sug-
gesting their high inhibitory activity against cancer cells. Moreover,
flow cytometry analysis was conducted using annexin V-fluorescein
isothiocyanate/PI (annexin V-FITC/PI) staining assay to confirm the
apoptosis induction by these three compounds (Fig. 8g–i). The results
revealed that compounds 3a, 3n, and4a induced apoptosis of 4T1 cells
in a dose-dependent manner, with apoptosis rates of 50.2%, 55% and
41.5% at 50 µM, respectively, which verified that the anticancer activity
of compounds 3a, 3n, and 4a may be related to the induction of
apoptosis.

Discussion
In summary, we established an unprecedented, highly diaster-
eoselective, and atroposelective protocol for the synthesis of N–N
axially chiral isoindolinones that proceeds via a Brønsted acid-

catalyzed asymmetric [4 + 1] annulation, which represents the first
example of the direct construction of N–N atropisomers with central
chirality and excellent stereocontrol. This methodology is promoted
by a chiral phosphoric acid that bifunctionally catalyzes a sequence of
two nucleophilic additions, dehydration, and dearomatization. Con-
trol experiments and DFT calculations revealed that the mechanism
possibly involves the irreversible formation of the hydroxy-biaryl
intermediate as likely the key step responsible for the observed ste-
reoselectivity. In addition, preliminary biological activity studies
revealed that someof theseN–Naxially chiral isoindolinones exhibited
potential tumor-cell inhibitory activity.

Methods
General procedure for the synthesis of enantioenriched 3 and 4
General Procedure. At –20 oC or 25 oC, to an oven-dried 10-mL vial
charged with a solution of the 1H-indol-1-amine or 2-methyl-1H-pyrrol-
1-amine 1 (0.4mmol) and the substituted 2-acetylbenzaldehyde 2a
(0.2mmol) in toluene (1.5mL) was added a solution of the catalyst (S)-
A4 (7.5mg, 0.01mmol, 5mol%) or (R)-C2 (6.7mg, 0.01mmol, 5mol%)
in toluene (0.5mL). The reaction mixture was stirred at the same
temperature for 24 h or 36 h. The mixture was concentrated under
reduced pressure and then purified by silica gel (deactivated by trie-
thylamine) flash chromatography to afford the desired product 3 or 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated and analyzed during this study are included in this
Article and its Supplementary Information. The X-ray crystallographic
coordinate for structures 3i, 3n, and 4b have been deposited at the
Cambridge Crystallographic Data Centre under deposition numbers
CCDC 2323929 (for 3i), 2323930 (for 3n), and 2323931 (for 4b),
respectively and can be obtained free of charge from the CCDC via
http://www.ccdc.cam.ac.uk/data_request/cif. All data are available
from the corresponding author upon request. Source data are present
with this paper. Source data are provided with this paper.
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