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ABSTRACT: Carboamination of readily available feedstock-like
alkenes, alkynes, and allenes has proven to be an efficient and
powerful tool for the synthesis of diverse and valuable amine
derivatives of relevance to medicinal chemistry, biochemistry, and
material science. Among these developed carboamination method-
ologies, the direct use of the C−H activation strategy to leverage
the carboamination process is particularly attractive due to the
ubiquity of such bonds in organic molecules. In this review, we
provide an overview of the development of intermolecular
carboamination across C−C π-bonds initiated by C−H activation in a redox-neutral and nonannulative manner, with an emphasis
on synthetic and mechanistic aspects. In principle, this review summarized these reactions with a key feature of involving an initial
C−H metalation followed by an intermolecular migratory insertion into π-bonds and terminated by an electrophilic amination
quenching, and thus, it is ordered by the sources of C- and N-based functionalities and further divided by π-compounds.
KEYWORDS: carboamination, C−H activation, transition-metal catalysis, alkenes and alkynes, amine derivatives

1. INTRODUCTION
Unsaturated hydrocarbons, such as alkenes, alkynes, and allenes,
are readily available feedstock-like synthons that are engaged in
diverse organic transformations. Difunctionalization of these
substrates by adding two functional groups across C−Cmultiple
bonds has emerged as an efficient and powerful strategy for the
rapid buildup of molecular complexity.1−11 Among them, the
synchronous introduction of both C- and N-based function-
alities (carboamination) toward these π-bonds is of particular
interest, since it could provide expedient and modular entry to
structurally diverse amine derivatives of close relevance to
bioorganic,12 agrochemical,13 and medicinal chemistry14 as well
as material sciences.15

The established carboamination reactions often fall into three
categories. Initial studies on this process focused on aza-Diels−
Alder reactions by taking advantage of imines as electron-poor
dienophiles or conjugated imines as electron-deficient aza-
dienes.16,17 These pericyclic reactions have found many
applications in total synthesis but are limited to the synthesis
of cyclic products. Alternatively, the radical-based reactions are
also popular and efficient, but the involvement of free radical
intermediates renders the stereoselective control of the reaction
rather difficult (Scheme 1, right).18,19 In contrast, the ionic-type
manifolds are usually capable of participating in stereocontrol
reaction manners.20−22 Consequently, a series of advances
involving the combinations of nitrogen nucleophiles and carbon
electrophiles has emerged to furnish either anti- or syn-
carboamination of different π-compounds via a key stereo-

determining aminometalation step (Scheme 1, upper left).23,24

This strategy, however, is restricted to the amine source with one
or more electron-withdrawing groups on the nitrogen atom, due
to the poisoning of the metal center by overcoordination. To
address this limitation, an umpolung25 amination strategy26−30

with N−LG (LG = leaving group)-type electrophilic amination
reagents has recently been introduced and its combination with
a suitable nucleophilic carbon source would also allow for
carboamination of C−C multiple bonds. For instance, organo-
metallic reagents (C−m) undergo facile transmetalation and
succeeding syn-specific migratory insertion into π-bonds.31−35

Upon electrophilic amination, syn-carboamination products are
obtained. Considering that many organometallic reactants are
sensitive to moisture and air and often originate from aromatic
or aliphatic hydrocarbons through the intermediacy of organic
halides, the direct use of C−H substrates as an alternative carbon
nucleophile would arguably be the most desirable method for
this transformation (Scheme 1, lower left).

However, C−H bonds are relatively inert, rendering their
catalytic cleavage more challenging. Moreover, the specific
selectivity needs to be addressed during the reaction process.
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The electronic and steric nature occasionally defines a specific
C−H bond activation.36 In most cases, the position of bond
activation is controlled by a coordinating group, which increases
the reactivity of a certain C−H bond, thereby controlling the
selectivity.37−52 The organometallic intermediate, generated in
situ by this way, undergoes a similar migratory insertion into the
π-bonds to form the metallacycle intermediate A (Scheme 2).
To ensure a carboamination event, this species should be stable
enough to proceed with further electrophilic amination and
meanwhile must suppress several potential pathways: e.g., β-H
elimination, protodemetalation, and direct reductive elimina-
tion.

Such C−H activation mediated by the carboamination
strategy allows C−H substrates acting as both carbon and
amination sources to maximize the atom economy of the
process. They can usually proceed under simple, mild, and
redox-neutral conditions with good functional group tolerance.
Most importantly, it has been proven to be predictable and
feasible for the control of the diastereoselectivity and the
enantioselectivity of the reaction, which empowers this synthetic
strategy to prepare valuable chiral compounds.

Hence, this review summarizes the achievements of
intermolecular carboamination of C−Cmultiple bonds initiated
by organometallic C−H activation in a nonannulative manner,
with an emphasis on synthetic and mechanistic aspects. These
reactions involve an initial C−H metalation followed by an
intermolecular migratory insertion into π-bonds and terminated
by an electrophilic amination quenching. For intermolecular

annulative carboamination reactions which deliver a hetero-
cyclic product, the reader is directed to these well-documented
reviews.53−55 This review is ordered by the sources of C- and N-
based functionalities and further divided by π-compounds.

2. DIVERSIFIED CARBOAMINATION OF
π-COMPOUNDS WITH N-PHENOXY AMIDES

Due to the presence of a cleavable −ONHR moiety, N-phenoxy
amides have been well-developed as versatile oxidizing directing
groups (ODGs) in diverse RhIII-, RuII-, IrIII-, PdII-, and CoIII-
catalyzed C−H functionalization reactions.56,57 A series of π-
compounds including alkynes, alkenes, and allenes have been
proven to be suitable coupling partners (CPs) to fulfill C−H
functionalization, among which the amide fragment could serve
as an internal N-source to realize the carboamination of a π-
bond in a redox-neutral manner.

2.1. Alkynes. In 2013, Lu, Liu, et al. introduced an elegant
intermolecular carboamination of alkynes by taking advantage of
RhIII-catalyzed C−H activation of N-phenoxyacetamides
(Scheme 3).58 This process was enabled by the novel versatile
group −ONHAc, which synergistically acted as the directing
group, the internal oxidant, and the electrophilic amination
source, thus leading to the o-hydroxyphenyl substituted enamide
products under mild and redox-neutral conditions. The
established method was widely applicable to biaryl and aryl
alkyl disubstituted alkynes, as well as propiolates and ynamides.
An investigation of the solvent effect revealed that the use of
MeOH and ethylene glycol was crucial for the carboamination

Scheme 1. Representative Reaction Modes for Intermolecular Carboamination toward C−C Multiple Bonds

Scheme 2. Potential Pathways of Transition-Metal-Catalyzed C−H Coupling with C−C Multiple Bonds
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event, whereas tBuOH, CH2Cl2, and toluene favored the
benzofuran formation with the departure of the acetamido
group (Scheme 3A). Meanwhile, the cost-effective Cp*CoIII

(Cp* = 1,2,3,4,5-pentamethyl-2,4-cyclopentadienyl) catalytic
system turned out to be comparably efficient for this
carboamination process, albeit limited to propiolates.59

Two distinct mechanistic pathways for the RhIII-catalyzed
carboamination reaction are illustrated in Scheme 3C. A RhIII−
RhI−RhIII catalytic cycle was proposed in the pioneering work
by Lu, Liu, et al., which commences with ONHAc-directed C−
H activation and alkyne insertion into the C−Rh bond to form
the seven-membered rhodacycle intermediate A1. This species
might be stabilized by forming an 18-electron complex through
the weak coordination of the solvent, such as methanol, which
thereby facilitates reductive elimination (RE) to give a ligated
Cp*RhI complex. Subsequent oxidative addition (OA) into the
O−N bond forms the isomeric seven-membered rhodacycle
species B, which undergoes protonolysis with HOAc to release
the enamide product and regenerate the active Cp*RhIII catalyst.
Alternatively, Wu, Houk, et al.60 figured out that a RhIII−RhV−

RhIII catalytic pathway was much more favorable on the basis of
detailed computational studies, in which the O−N bond
cleavage with ring contraction proceeds to deliver a RhV-
nitrenoid intermediate, which allows more facile C−N bond
reductive elimination. In addition, density functional theory
(DFT) calculations suggested that the dramatic solvent effect on
tuning the reaction chemoselectivity probably resulted from the
polarity instead of the ligand role. It is worth noting that most of
the follow-up research work gave solid support to the
intermediacy of the RhV-nitrenoid species.61

By virtue of the well-designed chiral cyclopentadienyl (CpX)-
coordinated RhIII catalyst,62−64 recently Li and co-workers have
achieved an asymmetric carboamination reaction using bulky 1-
alkynylnaphthalenes as the versatile coupling partners (Scheme
4).65 By using N-phenoxy amides as both C- and N-sources, a
series of C−C axially chiral enamides, which would not
otherwise be accessible, were obtained with good enantiose-
lectivities and yields. The synthetic utilization of this protocol
was further demonstrated by triflation of the free OH handle in
the enamide product, followed by a Pd-catalyzed intramolecular

Scheme 3. RhIII-Catalyzed 1,2-Carboamination of Alkynes with N-Phenoxyacetamides
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amination to deliver a chiral indole without erosion of
enantioselectivity.

In addition to the OH group, the presence of versatile amide
moieties and C−C double bonds in the enamide products also

enriched further diverse transformations to increase the
molecular complexity. In this regard, Zhao, Huang, et al.
disclosed a series of tandem reactions of N-phenoxyacetamides
with alkynes involving the enamide species as the key

Scheme 4. CpXRhIII-Catalyzed Enantioselective 1,2-Carboamination of 1-Alkynylnaphthalenes with N-Phenoxy Amides

Scheme 5. RhIII-Catalyzed 1,2-Carboamination/Cyclization Sequences
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intermediates.66 As shown in Scheme 5, the addition of Ag2CO3
as an oxidant promoted an extra intramolecular oxidation course
of olefins, thus leading to dihydrobenzofuro[2,3-d]oxazoles in
good yields (condition A). Additionally, the nascent amide unit
could serve as a directing group to assist the secondC−H [4 + 2]
annulation with another molecule of either the same or a distinct
alkyne in the presence of CF3CO2Ag at the evaluated

temperature (conditions B/C). Interestingly, the tricyclic
compound resulting from condition A could also be converted
back into the enamide under condition B, which was capable of
undergoing ex situ amide-directed C−H annulation to give
highly functionalized isoquinolines (Scheme 5B). These
stepwise transformations validated the involvement of the active
enamide intermediates.

Scheme 6. RhIII-Catalyzed 1,2-Carboamination/SN2′-Type Substitution Sequences

Scheme 7. RhIII-Catalyzed 1,2-Carboamination Followed by Intramolecular Lactonization
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When a suitable leaving group was preinstalled at the
propargylic position, an SN2′-type substitution could be
expected due to the good nucleophilic ability of the phenol
unit in the enamide intermediate (Scheme 6). This hypothesis
was first realized by Lu, Liu, et al. employing tert-butyl carbonate

(OBoc) as a leaving group for the synthesis of 3-alkylidene
dihydrobenzofuran derivatives.67 Such a protocol was applicable
to both primary and secondary propargylic carbonates but failed
with the tertiary series due to the steric hindrance. This
limitation could be overcome by using the fluoride as an

Scheme 8. RhIII-Catalyzed 1,2-Carboamination Followed by Radical Aerobic Oxygenation

Scheme 9. Cp*MIII-Catalyzed 1,2-Carboamination of Alkenes with N-Phenoxyacetamides
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alternative leaving group, in which the [H···F] bonding-assisted
intramolecular SN2′-type substitution process might be involved
by utilizing the fluorine atom as a feasible leaving group with less
steric hindrance.68 In addition, the introduction of an epoxide69

or cyclopropane70 at the propargylic position enabled similar
intramolecular SN2′ ring-opening processes, thus illustrating the
good compatibility of this strategy in constructing relative
skeletons. Of note, these conversions all favored the stereo-
selective formation of an (E)-exocyclic C−C double bond.

In 2018, Zhang, Xia, et al. revealed a RhIII-catalyzed tandem
coupling reaction of 3-arylpropiolates with N-phenoxyaceta-
mides (Scheme 7).71 Complementary to the Cp*CoIII counter-
part,59 this reaction addressed an opposite regioselective
carboamination across the C−C triple bond with 2-hydrox-
yphenyl tethered to the initial 2-position of propiolates. DFT
calculations revealed that the intramolecular N−H···O type
hydrogen bond promotes the isomerization of a C−C double
bond and rotation of a C−C single bond through enamine−
imine tautomerism. Finally, an intramolecular transesterification
course occurs to afford benzofuran-2(3H)-ones bearing an
exocyclic enamino motif with exclusive Z selectivity. Interest-
ingly, switching to 3-arylpropiolic acids as coupling partners
gave rise to a similar backbone but with a freeNH2 group derived
from the final hydrolysis of the amido group.72

In contrast, the use of Co(OAc)2·4H2O as an additive allowed
an intramolecular oxa-Michael addition of the incipient
enamides, followed by radical decarboxylative oxygenation
with molecular oxygen to yield isomeric benzofuran-3(2H)-
ones (Scheme 8A).73 Replacing the cobalt salt with Cu(OAc)2
caused an additional aerobic radical cleavage of the C�C bond

in the enamides. Alternatively, it provided ortho-acylated
phenols as the final products (Scheme 8B).74

2.2. Alkenes. Compared to the alkyne substrates, the initial
C−H activation of N-phenoxy amides followed by facile alkene
insertion would afford the similar seven-membered metallacycle
intermediate A2. In contrast to the C(sp2)−M bond formed
through alkyne insertion, the C(sp3)−M species is usually prone
to undergo a β-H elimination process. Indeed, Lu et al. disclosed
the feasible C−H olefination of N-phenoxyacetamides with
acrylates or styrenes under rhodium catalysis, leading to the
formation of diverse ortho-alkenyl phenol derivatives (Scheme
9A, top).75 To achieve the desired carboamination process, such
competitive β-H elimination must be suppressed, and the
alternative C−N bond reductive elimination from either an RhIII

or RhV intermediate should be accelerated (Scheme 9A,
bottom).

To address this issue, several strategies have been developed
for the targeted alkene carboamination. In 2016, Liu et al.
envisioned that the introduction of a chelating group in the
olefin substrate might ensure the metal center of A2 to be
coordinatively saturated, thus shifting the elementary step of β-
H elimination into C−N bond reductive elimination. For this
reason, they utilized N-alkoxyacrylamides as the coupling
partners and found that the commonly used Cp*RhIII catalytic
system was sufficient to unleash the desired amido group
transfer en route to o-tyrosine derivatives (Scheme 9B, top).76

Control experiments verified the key role of the N−H bond
rather than the N-alkoxy group in acrylamide for the overall
carboamination event. Complementary to the Cp*RhIII

counterpart, the Cp*CoIII catalyst often requires no coordina-

Scheme 10. CpXCoIII-Catalyzed Enantioselective 1,2-Carboamination of Alkenes with N-Phenoxy Amides
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Scheme 11. CpXRhIII-Catalyzed Enantioselective 1,2-Carboamination of 1,3-Dienes with N-Phenoxy Amides

Scheme 12. RhIII-Catalyzed Carboamination of Sulfonyl Allenes with N-Phenoxy Amides
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tive saturation for the C(sp3)−M center and inherently favors
C−Nbond reductive elimination over β-H elimination. The first
example came from the Glorius group, who described a CoIII-

catalyzed carboamination of simple acrylates with N-phenox-
yacetamides for the direct synthesis of unnatural amino acid
derivatives (Scheme 9B, middle),77 rather than the Heck-type

Scheme 13. RhIII-Catalyzed 1,2-Carboamination of Alkenes with N-Enoxyphthalimides
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product under rhodium catalysis observed by the Lu group. This
cobalt system was further extended to stereoselective carboami-
nation of bicyclic alkenes (Scheme 9B, bottom).59

Inspired by the prevalent chiral CpXRhIII-catalyzed asym-
metric C−H functionalization reactions, several analogous chiral
CpXCoIII catalysts were also rationally designed by the Cramer
group and enabled asymmetric alkene carboamination with N-
phenoxy amides as bifunctional reactants (Scheme 10).78 They
also revealed that a substituent on the cyclopentadienyl moiety
was crucial for the enantioselective control. Based on these,
acrylates and bicyclic alkenes were converted to attractive
enantioenriched isotyrosine derivatives as well as elaborated
amino-substituted bicyclic scaffolds with excellent enantiose-
lectivity.

Despite the well-established carboamination of alkenes, the
intermolecular carboamination reactions of conjugated dienes
and allenes are still in their infancy. The C- and N-based
functionalities could be typically incorporated into either 1,2- or
1,n-positions�such extra regioselectivity clearly increases the
complexity. Very recently, Yi, Zhou, et al. established the first
regioselective and enantioselective 1,2-carboamination of 1,3-
dienes under chiral CpXRhIII catalysis for the synthesis of chiral
allylic amine derivatives (Scheme 11).79 The bulk of the amido
group in the N-phenoxy amide substrates had a dramatic effect
on the reactivity and enantioinduction, with isopropyl being the
optimal substituent. Of note, both Z- and E-type 1,3-dienes were
compatible to give the related chiral allylic amines with retention
of the configuration. A combined experimental and computa-
tional study supports an unusual RhIII−RhI−RhIII catalytic

Scheme 14. CpXRhIII-Catalyzed Enantioselective 1,2-Carboamination of Acrylates with N-Enoxysuccinimides
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pathway. Here, the presence of an additional C�C bond
inherently favors the facile generation of an η3-allylic Rh species
prior to β-H elimination, which then undergoes a stereo-
determining amide transfer through intramolecular nucleophilic
substitution of imine to the π-allylrhodium moiety. The
enantioselectivity was rationalized by comparing the energy
differences between the two transition states TSR and TSS with
respect to related enantiomers in several alcoholic solvents
(Scheme 11C). The results indicated that the Gibbs free energy
of TSS is consistently higher than that of TSR by about 1.7 kcal/
mol, corresponding to good calculated ee values (up to 92% ee),
which was well in line with the experimental observation that R-
selective products were obtained with good enantioselectivity.

The same group later disclosed a Rh-catalyzed regio- and
stereospecific carboamination of sulfonyl allenes with N-
phenoxy amides (Scheme 12).80 This protocol represented a
straightforward approach for the construction of highly
functionalized allylamine derivatives with the presence of an
α-quaternary carbon center and could be facilely employed for
the late-stage C−H modification of complex natural products
and bioactive molecules. Divergent transformations of the
allylamine products, such as hydrolysis of the amide moiety into
free NH2 and reductive desulfonylation, further demonstrated
its profound synthetic potential.

3. N-ENOXY IMIDES AS BOTH C−H SUBSTRATES AND
AMINATION SOURCES

In a search for versatile C−H substrates and N-sources for
carboamination transformations, N-enoxy imides have attracted
continuous interest from synthetic chemists.81−86 In 2014, Rovis
and colleagues disclosed that N-enoxyphthalimides underwent
an RhIII-catalyzed C−H activation and coupled with electron-
deficient alkenes to afford the intriguing cyclopropane adducts
(Scheme 13A).86 The mechanism has been proposed to involve
the formation of intermediate A3 resulting from alkene
carborhodation, wherein the rhodium center ligates the enol
alkene fragment due to coordinative unsaturation and thus
experiences an additional migratory insertion to form the C−C
bond in the cyclopropane product.

Inspired by these advances, the authors envisioned that a
bidentate directing groupmight enable the rhodium center to be
coordinatively saturated, thus probably switching the reaction
path from cyclopropanation to carboamination via a direct C−N
bond reductive elimination. Based on this hypothesis, the same
group later achieved a RhIII-catalyzed syn-carboamination of
alkenes using N-enoxyphthalimides as both the C- and N-
sources (Scheme 13B,C).87 The choice of methanol as the
reaction solvent was decisive, which enabled in situ ring opening
of the phthalimide fragment to form a phthalimide-derived
amido ester as a transient bidentate directing group. In addition,
further ligand modification revealed that a beneficial effect on

Scheme 15. RhIII-Catalyzed Carboamination of Sulfonyl and Phosphinyl Allenes with N-Enoxy Imides

Scheme 16. RuII-Catalyzed 1,2-Carboamination of Alkynes with Arylhydrazine-1,2-dicarboxylates
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the reactivity and chemoselectivity was posed by increasing the
steric hindrance of the cyclopentadienyl ligand, with tert-
butyltetramethylcyclopentadienyl (Cp*tBu) being optimal. Of
note, the specific syn-selectivity of the reaction was verified by
the stereochemical outcome of the parallel coupling with
fumarate and maleate esters. Mechanistically, a RhIII−RhI−RhIII

catalytic cycle was proposed by Rovis et al., in which the C−N
bond reductive elimination followed by an oxidative addition
process might be involved. An alternative RhIII−RhV−RhIII

mechanism involving a RhV-nitrenoid intermediate was also
assumed by Chen, Liu, et al. on the basis of a computational
analysis (Scheme 13D).88

The asymmetric variant was recently achieved by Cramer and
co-workers, who developed an enantioselective CpXRhIII-
catalyzed intermolecular carboamination of acrylates through
vinylic C−Hactivation ofN-enoxysuccinimides for the synthesis
of chiral α-amino esters (Scheme 14).89 Notably, related N-
enoxyphthalimide derivatives failed to deliver the carboamina-
tion products. A tailored bulky trisubstituted chiral CpX ligand
was also found to be essential to ensure the carboamination
pathway as well as high levels of enantioselectivity. The observed
enantioselectivity could be rationalized by the steric bulk

between the methyl cyclohexyl moiety and the olefinic ester
group, which resulted in the orientation to give the selective S-
products.

In addition, allene carboamination was also investigated. In
the context of carboamination of sulfonyl allenes with N-
phenoxy amides (Scheme 12),80 the Rh-catalyzed procedure
also extended the use of both N-enoxyphthalimides and N-
enoxysuccinimides as bifunctional reactants to carboaminate the
allene moiety (Scheme 15).

4. ARYLHYDRAZINES AS BOTH C−H SUBSTRATES
AND AMINATION SOURCES

In contrast to the above bifunctional substrates used for the
transfer of nitrogen and carbon portions via the fission of theO−
N bond, a similar N−N bond cleavage strategy for selective
carboamination of π-compounds remains elusive. The sole
example came from the Reddy group, in which they utilized
arylhydrazine-1,2-dicarboxylates as the bifunctional reagents for
carboamination of internal alkynes for the synthesis of
enecarbamates (Scheme 16).90 This reaction was exclusively
enabled by a RuII catalytic system instead of the above Cp*MIII

catalysis, and the proposed mechanism involved a RuII−Ru0−

Scheme 17. CpXRhIII-Catalyzed 1,1-Carboamination of Alkenes with Aromatic C−H Substrates and Electrophilic Aminating
Agents
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RuII catalytic pathway. A relatively higher reaction temperature
was required to ensure moderate efficiency for this trans-
formation, which was probably due to the lower reduction
potential of the N−N bond than an O−N bond. Of note, the

choice of trifluoroethanol as the reaction medium seems crucial
to facilitate the C−N bond reductive elimination, thus
suppressing the direct protonolysis process to form a hydro-
arylated product.

Scheme 18. RhIII-Catalyzed 1,2-Carboamination of Bicyclic Alkenes of Aromatic C−H Substrates and Dioxazolones

Scheme 19. CpXRhIII-Catalyzed Enantioselective Carboamination of Ethylene and Bicyclic Alkenes with Aromatic C−H
Substrates and Dioxazolones
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5. CONJUGATIVE COUPLING WITH DISCRETE C−H
SUBSTRATES AND AMINATION SOURCES

The aforementioned two-component carboamination strategy
uses a bifunctional reactant to serve as both C- and N-resources
for difunctionalization of C−C π-compounds, but it often suffers
from limited substrate accessibility and structural diversity. In
contrast, the use of an exogenic aminating reagent would provide
an alternative, three-component carboamination strategy of C−
C π-bonds, thus enriching the reaction complexity and the
substrate diversity to a certain extent.91 In 2019, Ellman et al.
reported an interesting Cp*RhIII-catalyzed 1,1-addition of C−H
bonds and aminating agents to terminal alkenes for the
construction of diverse benzylamine derivatives (Scheme
17).92 The robustness of the reaction was demonstrated by
varying all three inputs to obtain a broad range of α-branched
benzylamine products. Both O-acyl hydroxamic acids and
dioxazolones could serve as electrophilic aminating sources to
prepare carbamate- and toluenesulfonyl (Ts)-protected benzyl-
amines, as well as alkyl and aryl amide derivatives, respectively.
Remarkably, the protocol was widely applicable to styrenes,
acrylates, and unactivated olefins, even including the bulk
chemical feedstocks ethylene and propylene. Moreover, this
transformation was amenable to different C−H bond substrates
with commonly encountered directing groups, such as pyridine,
pyrimidine, triazole, pyrazole, oxime, amide, and hydrazone.
The in situ generated hydrazone substrates from related
aromatic aldehydes and hydrazines also resulted in good
reactivity, thus enabling a one-pot, four-component carboami-
nation process with comparable efficiency.93 Mechanistically,
this unexpected 1,1-alkene addition could be rationalized by the
β-H elimination of rhodacycle intermediate A5 resulting from

alkene carborhodation, followed by M−H reinsertion and
terminated by an intermolecular electrophilic amination step
(Scheme 17C).

Subsequently, the three-component carboamination strategy
has been successfully extended to couple with bicyclic alkene
partners, leading to the formation of the 1,2-addition products
(Scheme 18).94 In addition, the asymmetric variants of both
1,1-92 and 1,2-carboamination94 reactions have been achieved
by virtue of the chiral CpXRhIII catalytic system, albeit with
relatively moderate enantioselectivity (Scheme 19). Taken
together, these advances not only provided a straightforward
and high-efficiency route for the assembly of such skeletons in a
stereoselective manner but also illustrated their profound
synthetic potential for future application.

In comparison with alkenes, carboaminations of conjugated
dienes could be conceivably more complicated by an additional
regiocontrol. For instance, Glorius et al. achieved the intriguing
RhIII-catalyzed highly selective 1,4-carboamination of 1,3-dienes
with Weinreb amides and dioxazolones (Scheme 20).95 Their
results showed that the use of a sterically demanding tert-butyl
dioxazolone was essential for realizing the 1,4-selectivity, which
was further confirmed by the experimental observation that an
alternative 1,2-carboamination product was formed by switching
tert-butyl dioxazolone to the less bulky methyl dioxazolone. A η3

π-allyl rhodium species was proposed to be involved in the
catalytic cycle, which proceeded by a steric-hindrance-
controlled 1,4-selective C−N bond reductive elimination to
furnish the desired products (Scheme 20C).

Despite the precedented two-component 1,2-carboamination
of dienes, Li et al. recently reported a three-component chiral
CpXRhIII-catalyzed regiospecific and enantioselective 1,2-
carboamination of dienes with amides, in which dioxazolones

Scheme 20. CpXRhIII-Catalyzed 1,4-Carboamination of 1,3-Dienes with Weinreb Amides and Dioxazolones
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were employed as versatile aminating reagents (Scheme 21).96

The contrast of this protocol with the aforementioned 1,4-
carboamination of dienes from the Glorius group, similar
catalytic systems and substrates were engaged but resulted in
distinct 1,2-/1,4-selective carboamination. Further DFT calcu-
lations were carried out to account for this difference, and the
results revealed that the steric effect between the arene
(directing group) and the aminating reagent played a crucial
role in determining the regioselectivity (Scheme 21C).

Compared to the above three-component carboamination of
alkene or diene substrates, such a strategy remains less
developed for alkynes. This was probably due to the easier
protonolysis in comparison to further electrophilic amination of
a vinyl metal species generated via alkyne insertion. In contrast,
the aryne chemistry has evolved as a powerful platform for
vicinal difunctionalization of aromatic rings.97 The in situ
generated arynes are extremely reactive electron-deficient
intermediates, which facilely undergo the nucleophilic addition
process, followed by trapping with an electrophilic partner to
give difunctionalized products. Based on this understanding,
Xiao, Chen, et al. realized a Cu-catalyzed three-component
carboamination of benzynes with C−H substrates and O-
benzoylhydroxylamines (Scheme 22).98 In the reaction, the
benzyne species could be generated from a mild fluoride-
induced 1,2-elimination of 2-(trimethylsilyl)aryl triflates. More-
over, further investigation found that terminal alkynes and
benzoxazoles were able to be used as versatile C−H bond

activation substrates. Taken together, this protocol represented
an efficient carboamination of benzynes and provided modular
access to o-alkynylanilines or o-benzoxazolyl anilines which were
otherwise difficult to prepare.

6. CONCLUSION AND OUTLOOK
Intermolecular carboamination across C−C multiple bonds has
emerged as an efficient and powerful tool for the synthesis of
diverse and valuable amine derivatives. This review has
summarized the recent development of organometallic C−H
activation mediated by redox-neutral and nonannulative
carboamination reactions. Mechanistically, these reactions
commence with a C−H metalation, followed by an intermo-
lecular migratory insertion into C−C π-bonds and terminated
by an electrophilic aminating trapping.

Despite significant advances made in this reaction type, it is
still far from synthetic maturity and remains to face new
challenges in several aspects. (1) A deeper insight into the
detailed mechanism is required, especially for the elementary
electrophilic aminating step determining whether a higher-
valent metal center is involved or not. (2) Most established
carboamination reactions are enabled by elaborately designed
CpXMIII catalysts�hence the development of a simple,
abundant, and inexpensive catalytic system, e.g., based on the
first-row transition metals, is highly desirable. (3) All the studies
reviewed here originated from an organometallic C(sp2)−H
cleavage, and related C(sp3)−H activation initiated variants are

Scheme 21. CpXRhIII-Catalyzed Enantioselective 1,2-Carboamination of 1,3-Dienes with Aromatic Amides and Dioxazolones
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still unexplored. (4) Although a handful of asymmetric
carboamination approaches have been developed, most of
their enantioselectivities are still needed to be improved further.

Overall, intermolecular nonannulative carboamination repre-
sents an exciting and rapidly growing research field, which would
bring many opportunities for method and catalyst develop-
ments, mechanistic investigations, and synthetic applications.
We believe that this timely reviewwill attract great enthusiasm of
chemists over the coming years.
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