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ABSTRACT: This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a
wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I)
complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as
well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the
synthesis of chiral tridentate pincer phosphines to a concise 1−2 step process, contrary to conventional, labor-intensive multistep
procedures. Importantly, the development significantly expands the applicability of earth-abundant Mn(I)-based complexes beyond
their recently established roles in catalytic hydrogenative and conjugate addition reactions, emphasizing the catalytic potential of
Mn(I) complexes as a viable alternative to noble metal chemistry and, in some cases, even surpassing their performance.

■ INTRODUCTION
Homogeneous catalysis is central to modern organic chemistry,
driving efficient transformations across diverse applications.1

This often relies on noble transition metals paired with (chiral)
phosphine ligands2; however, their high costs and limited
availability, along with challenges in chiral ligand synthesis,
motivate the search for sustainable alternatives. Consequently,
earth-abundant metals like iron and manganese have emerged
as attractive candidates3 for environmentally friendly catalysis
that reduces reliance on precious metals while advancing
synthetic methods.
Recent advances, particularly in hydrogenation reactions

historically dominated by noble metals, have highlighted the
potential of manganese.4 In 2016, groundbreaking research by
Milstein4a and Beller4b showed that Mn(I) catalysts could
perform (de)hydrogenation reactions, later extended by
Clarke4c and Beller4d to enantioselective variants and
asymmetric hydrogenations of heteroaromatics.5 These find-
ings suggest that manganese can be a viable alternative to
precious metals in terms of both sustainability and reactivity.
Previously, manganese was mainly associated with high-valent
oxidation chemistry.6 Its recent use in low-valent complexes,
particularly in hydrogenative processes with pincer and

nonpincer ligands, marks a significant shift.4,5,7 These
complexes enable a range of transformations via Mn−H
species formation.
Our group has recently extended the utility of Mn(I)

complexes by demonstrating their ability to activate H−P
bonds, achieving enantioselective conjugate additions to
various Michael acceptors (Scheme 1a).8

These findings underscore the untapped potential of
manganese for more sustainable chemistry, emphasizing the
need to further explore its catalytic reactivity beyond
asymmetric addition reactions.
Building on this, we wondered whether the nucleophilicity

of the Mn-phosphido complex could facilitate SN2 substitu-
tions with alkyl halides. The catalytic asymmetric SN2
alkylation of secondary phosphines shows promise for

Received: November 15, 2024
Revised: December 30, 2024
Accepted: January 6, 2025

Articlepubs.acs.org/JACS

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/jacs.4c16130

J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

SH
A

A
N

X
I 

N
O

R
M

A
L

 U
N

IV
 o

n 
Ja

nu
ar

y 
18

, 2
02

5 
at

 0
0:

24
:0

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bin+Wan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marta+Castin%CC%83eira+Reis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tizian-Frank+Ramspoth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Syuzanna+R.+Harutyunyan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.4c16130&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=tgr1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.4c16130?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


producing P-stereogenic phosphines, which play a crucial role
in asymmetric transformations. Despite recent advances,
efficient synthetic methods for P-chiral compounds remain
limited, creating a demand for further development in this
area.9 In 2006, Toste and Bergman’s Ru-iPr-PHOX complex
achieved moderate enantioselectivity with benzyl and ethyl
chlorides, marking an important milestone.10 They later
adapted this to a mixed-ligand Ru system for alkyl bromides.11

Concurrent work by Glueck12 and Duan13 developed
platinum- and palladium-based systems, respectively. Despite
their success, these noble metal systems are limited in scope
and often rely on costly metals. Recognizing that these
transformations should not be restricted to noble metals,
Glueck proposed that base metals could be viable.14 Later
studies confirmed this with Cu15 and Ni16 complexes for
related reactions. Recently, Yin’s group developed a highly
enantioselective Cu-catalyzed method that achieves a broad
scope of P-stereogenic products (Scheme 1b),15b while Duan’s
Ni-catalyzed approach using primary phosphines further
underscores the potential of earth-abundant metals in
phosphorus chemistry.16b

With these advances in mind, we investigated the potential
of chiral Mn(I) complexes as catalysts for enabling the SN2
alkylation of secondary phosphines for producing P-stereo-
genic phosphines (Scheme 1c).

■ RESULTS AND DISCUSSION
At the outset of our investigation, we selected HPPhMes (1a)
and benzyl chloride (2a) as the model substrates. For
catalyzing this transformation, we opted for the (Rc, Sp)-
Clarke Mn(I) complex, a catalyst utilized in our prior research.
Additionally, we decided to quench reactions with S8 to
safeguard the phosphine products for easier characterization.
Initially, toluene served as the solvent, with tPenOK as the
base, following our previous hydrophosphination conditions
for Michael acceptors. However, we observed only 10% of the
desired product (2′a) under these conditions, which, in
addition, was racemic. Notably, the reaction did not proceed in
the absence of the catalyst or a base, confirming the
indispensability of the Clarke catalyst. Through careful
optimization, inspired by both our previous work and reports

by Yin on Cu-based systems,15b we identified cesium carbonate
(Cs2CO3) and acetonitrile (CH3CN) as the optimal base and
solvent, allowing the reaction to be performed at room
temperature in 2 h. Under these conditions, the Mn(I)-based
catalyst exhibited high efficiency, yielding product 2′a in 90%
isolated yield and 90% ee (Table 1, entry 1).

We explored alternative bases and found that 2-tert-butyl-
1,1,3,3-tetramethylguanidine (Barton’s base) resulted in
slightly lower enantioselectivity (entry 2), while potassium
carbonate (K2CO3) yielded optimal asymmetric induction but
with a lower overall yield (entry 3) due to the remaining
substrate. Our optimization studies revealed that relatively
weak bases, such as carbonates, are optimal for this system
(entries 1 and 3), whereas stronger bases lead to either catalyst
decomposition or lower enantioselectivity (entry 2). Notably,
solvents capable of solubilizing the base, such as CH3CN and
iPrOH, proved equally effective (entries 1 and 4), providing
both a high yield and excellent enantioselectivity. Conversely,
solvents like THF, CHCl3, and toluene were suboptimal
(entries 5−7). Lowering the reaction temperature to 0 °C
improved the enantioselectivity to 95% ee but with a decreased
yield (entry 8 vs entry 1), likely due to configurational stability
issues of the phosphine product. This is confirmed by the fact
that prolonged reaction times led to decreased enantiomeric
purity (entry 9), suggesting racemization of the P(III)-chiral
product at room temperature and therefore improvement of
the enantioselectivity of the process at lower temperatures.
Based on these studies, we identified the optimal reaction
conditions: CH3CN as the solvent, Cs2CO3 as the base, 8 mol
% Clarke catalyst, and a 2 h reaction time.
After establishing the optimal reaction conditions for the

Mn(I)-catalyzed enantioselective SN2 substitution of benzyl
chloride by diphenylphosphines, we moved to explore the
substrate scope (Scheme 2). The results revealed that both aryl
groups bearing an electron-donating substituent and those
bearing an electron-withdrawing substituent in the para-
position were well tolerated in this reaction, as indicated by
the reaction outcomes delivering products 2′b−2′e. The steric
hindrance at the aryl groups of compounds 2′f−2′i minimally

Scheme 1. State-of-the-Art and This Work

Table 1. Optimization of the Reaction Conditionsa

entry variations yield 2′a [%]b ee 2′a [%]c

1d none 90 90
2 Barton’s base 91 84
3 K2CO3 70 90
4 iPrOH 85 92
5 THF 18 80
6 CHCl3 0 -
7 toluene 3 -
8e 0 °C 76 95
9 16 h 92 81

aReaction conditions: 0.1 mmol 1a, 0.12 mmol 2a, 1.5 equiv; base in
0.5 mL solvent. bDetermined by 1H NMR spectroscopy of the
reaction crude mixture using 1,3,5-trimethoxybenzene as an internal
standard. cDetermined via the chiral SFC system. d0.2 mmol of 1a,
0.24 mmol of 2a, 0.24 mmol of CS2CO3, in 1 mL of CH3CN, isolated
yield. eReaction time: 36 h.
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impacted both yield and enantioselectivity. Importantly, the
catalytic system is compatible with pyridine and quinolone
groups, yielding the desired products with high yields and
enantiopurities (2′j and 2′k). Noteworthy is that these
substrates, previously incompatible with Cu-based catalytic
systems,14b allow two-step access to chiral pincer-like ligand
structures, which would otherwise require multistep synthesis.
Additionally, our system tolerates not only unsubstituted
pyridine but also more decorated analogues (2′l and 2′m). In
addition to benzyl chlorides, we examined other activated
chlorides (allyl and propargyl) as electrophilic partners in this
reaction. Both substrates were converted fully, affording the
corresponding products (2′n−2′p) with high enantiomeric
excess (ee).
While these findings were promising, we wondered whether

our manganese-based catalytic system could handle more
challenging, less reactive alkyl halides. As a first test, we turned
to alkyl bromides (3), which were not compatible with the
previously reported Cu-based methodology that required
highly activated iodide analogues for alkylation.14 We were
pleased to observe that alkyl bromides are readily converted by
our catalytic system, also demonstrating remarkable tolerance
to various substituents, yielding enantioenriched products
(3′a−3′h). Given the potential applications of this chemistry,
especially as ligands for homogeneous catalysis, it is intriguing
to consider the compatibility of functional groups that could
enhance the binding to the metal. In this context, we
successfully isolated product 3′e, derived from an alkyl
bromide bearing a Boc-protected amine 3. The corresponding
unprotected product could potentially serve as a chiral
bidentate ligand for similar applications. Our catalytic system
shows excellent compatibility with alkyl bromides featuring

electron-withdrawing groups, delivering products (3′f−3h)
with high ee. We also explored the effectiveness of alkyl iodides
as electrophiles in the reaction. The substrate 1-iodohexane
yielded the corresponding product in 85% yield and 92% ee
(see the SI), similar to results observed with 1-bromohexane
3a.
Moving on to alkyl iodide substrates (4), we noticed that the

electronic properties of their substituents did not compromise
the high levels of enantioselectivity and reaction efficiency
either, as their corresponding products (4′a−4′e) were all
obtained with high yields and ee.
Next, we explored the effect of the aryl group on the

phosphorus atom (Scheme 3a). Utilizing less hindered aryl
groups in the phosphine moiety or substituting one of the
methyl groups of 1a with a chloride led to a modest reduction
in the enantioselectivity of the corresponding products (5′a−
5′e). Interestingly, an alkyl group was also tolerated in this
reaction (5′f).
Recognizing the significance of bidentate and tridentate

ligands in homogeneous catalysis, we pursued the synthesis of
chiral diphosphine ligands (Scheme 3b). Notably, diphosphine
products 6′a and 6′b were synthesized using 1,3-dibromopro-
pane 6a and 1,3-bis(chloromethyl)benzene 6b, respectively.
More significantly, the reaction with heteroaromatic 2,6-
bis(chloromethyl)pyridine 6c yielded the corresponding
product 6′c with 98% yield and 99% ee, enabling the
straightforward synthesis of a pincer-type tridentate chiral
PNP ligand in a single step.
To demonstrate the utility of this development, upon

completion of the reaction between 1a and 6c, we quenched
the reaction with the corresponding metal salts (instead of
elemental sulfur) to form the corresponding Mn(I) and Cu(I)

Scheme 2. Scope of Organohalidesd

aThe absolute configurations of 2′a and 3′c were identified by single-crystal X-ray crystallography (for details, see the SI). b0.1 mmol of 1, 0.12
mmol of 2 and 3, and 0.15 mmol of Cs2CO3 in 0.5 mL of CH3CN.

c0.1 mmol of 1, 0.10 mmolof 2m, and 0.15 mmol of Cs2CO3 in 0.5 mL of
CH3CN.

dReaction conditions: 0.2 mmol of 1 and 0.24 mmol of 2, 4, and Cs2CO3 in 1 mL of CH3CN.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.4c16130
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/jacs.4c16130/suppl_file/ja4c16130_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=sch2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c16130/suppl_file/ja4c16130_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c16130?fig=sch2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c16130?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complexes with the unprotected diphosphine 7 (formed prior
to 6′c). The resulting Mn(I) and Cu(I) complexes were
generated and isolated in good yields (Scheme 4a). We then

tested the newly synthesized chiral Mn(I) complex in the
asymmetric transfer hydrogenation of an aryl ketone and were
pleased to observe its outstanding performance, achieving the
corresponding product with a 98% ee (Scheme 4b).
The mechanism of this transformation likely follows the SN2

pathway, as proposed in previous reports of metal-catalyzed
reactions between phosphines and organohalides.10−16

The high reactivity and enantioselectivity observed in the
reaction between 1a and 2a (yield 85%, ee 90%) in the

presence of the radical scavenger BHT strongly support a
nonradical mechanism.17 Furthermore, the reaction’s high
efficiency with linear organohalides and the lack of reactivity
with bulky substrates like tBuCl and tBuI further support an
SN2 pathway. A key question is at what stage does
enantiodiscrimination occur within this Mn(I)-based catalytic
system and which Mn(I) species are responsible? In our earlier
studies on conjugate additions, we proposed that a Mn-
phosphido complex forms when diarylphosphine interacts with
a chiral Mn(I) complex (Clarke’s catalyst).8a This hypothesis
may also extend to the current reaction, where a similar Mn-
phosphido complex is formed but now yields two interconvert-
ing diastereomeric species that can undergo SN2 substitution
with halides at different rates. Consequently, enantiodiscrimi-
nation may occur either during the formation of the Mn(I)-
phosphido complex or in the subsequent substitution step. Our
initial attempts to monitor speciation and the formation of
diastereoisomers during this reaction using 31P NMR were
unsuccessful due to the formation of several broad peaks at
every stage of the reaction, which complicated structural
assignment. Therefore, we turned to molecular modeling
(Scheme 5). Our computational analysis began with examining
the coordination of the phosphine ligand to Clarke’s catalyst,
which revealed the formation of two diastereomeric species, I
and II. In the presence of a base, these species can undergo
deprotonation, yielding species III and IV. Notably, although I
and II differ by only 0.73 kcal/mol, the energy gap between III
and IV increases significantly to 3.46 kcal/mol. This shift is
attributed to the disruption of a π−π interaction between the
pyridine moiety and the phenyl or mesyl groups present in I
and II, which is replaced in IV by a stabilizing CH−π
interaction between the pyridine and phenyl groups (see the
SI). With species III and IV established, we found that the
addition of alkyl halide to III is both kinetically and
thermodynamically favored, exhibiting an energy barrier of
3.36 kcal/mol and a substantial energy release of 35.25 kcal/
mol.
This preference results from the orientation of the phenyl

group, which optimally accommodates the electrophilic carbon
center and enables a stabilizing π−π interaction between the
phosphine’s phenyl group (in the manganese complex) and the
phenyl group of the organic halide. This interaction is absent in
the diastereomeric transition state (TS−IV−V). Additionally,
in IV, the phosphorus atom’s lone pair engages strongly with
the amino group’s hydrogen, reducing its nucleophilicity
compared to the phosphorus in III (see the SI). This
interaction further obstructs substrate accommodation, leading
to a higher energy penalty. Our findings suggest that the
stereodiscrimination step aligns with the alkyl halide addition
stage, where differential interactions dictate the preference for
the reaction to occur through species III.

■ CONCLUSIONS
In conclusion, this paper introduces a novel Mn(I)-catalyzed
enantioselective alkylation methodology that efficiently pro-
duces P-chiral phosphines with excellent yields and enantio-
selectivities, demonstrating the versatility and potential of
Mn(I) complexes. This approach enables the synthesis of
chiral tridentate pincer phosphines in a streamlined 1−2 step
process, significantly expanding the utility of earth-abundant
Mn(I) complexes and cementing them as a viable alternative to
noble metal catalysts in various synthetic applications.

Scheme 3. Scope of Phosphines and Dihalidesa,b

aReaction conditions for (a) 0.1 mmol of 5, 0.12 mmol of 2a, 0.15
mmol of Cs2CO3 in 0.5 mL of CH3CN.

bReaction conditions for (b)
0.2 mmol of 1a; 0.1 mmol of 6a−6c (for 6a X = Br; for 6b and 6c X =
Cl), 0.24 mmol of Cs2CO3 in 1 mL of CH3CN.

c0.1 mmol of 5f, 0.2
mmol of 2a, 0.2 mmol of Cs2CO3, 0.2 mmol of DBU, 10 mol% (Rc,
Sp)-Clarke in 0.5 mL of CH3CN for 16 h.

Scheme 4. Applications of the Methodology
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