Chem Soc Rev

View Article Online

REVIEW ARTICLE

Check for updates

Cite this: Chem. Soc. Rev., 2021, 50, 5062

Received 24th November 2020 DOI: 10.1039/d0cs01392g

rsc.li/chem-soc-rev

1. Introduction

During the last two decades metal-catalyzed activation and functionalization of C–H bonds have tremendously improved the syntheses of a variety of functionally useful molecules and molecular materials, often *via* cross-coupling of C–C bonds with better atom economy.^{1–13} Due to the high reactivity of C–SiR₃ bonds, efforts have been recently made to regioselectively transform C–H bonds into more reactive and versatile C–Si bonds *via* successive metal-catalyzed C–H bond activation

Metal-catalyzed silylation of sp³C–H bonds†‡

Bin Li 🕩 *^a and Pierre H. Dixneuf 🕩 *^b

Metal-catalyzed activations of inert sp^2C-H and sp^3C-H bonds have recently brought about a revolution in the synthesis of useful molecules and molecular materials. Among them, the catalytic silylation of $sp^{3}C-H$ bonds has been developed due to the interest in the formed sp^3C-SiR_3 silanes, a stable organometallic species, for carrying out further functionalizations that cannot be directly achieved using $sp^{3}C-H$ bonds. Besides many examples of sp^2C-H bond catalytic silulations, metal-catalyzed silulations of sp^3C-H bonds have been mostly discovered during the last decade in spite of the high reactivity of the $sp^{3}C-SiR_{3}$ group. This review will present all the methods of metal-catalyzed silvlations of $sp^{3}C-H$ bonds into $sp^{3}C-SiR_{3}$ functions, discuss the catalytic mechanisms according to various metal-catalysts, and illustrate their applications in synthesis. The review describes successively the intermolecular $sp^{3}C-H$ bond silvlations directed first by N-containing heterocycles with silanes using various Ru, Rh, and Ir catalysts and then directed by an amide type function using a Pd(II) catalyst and R₃Si-SiR₃ reagent. The catalytic intramolecular silylations of $sp^{3}C-H$ bonds can be performed after the catalytic formation of CH–OSiR₂H or CH–N(R)SiR₂H groups from alcohols, ketones, esters, or amine NH bonds by catalytic hydrosilylation with R₂SiH₂. Both catalytic processes can be performed using Ir(i) and Rh(i) catalysts with an alkene to capture the formed H₂. This reaction with Rh(1) and Ir(1) catalysts can be applied to the formation of 5-membered cyclic silanes from aryl silanes and from alkyl silanes arising from hydrosilylated terminal C=C bonds of alkenes. Oxidation of the cyclic silane derivatives easily leads to 1,3- and 1,4-diols, from alcohol or ketone precursors and to 1,2-amino alcohols from amines. Several methods show how to transform various heteroatom-methyl groups X-CH₃: B-CH₃, O-CH₃, Si-CH₃, N-CH₃, Ge-CH₃ and S-CH₃ into their reactive functionalized X-CH₂SiR₃ group, using various Ru(0), Ir(1), pincer-Ru(11), or Y catalysts. Examples are shown of catalytic transformations of the allylic moiety $CH_3-C(R)=CH_2$ into its silylated $CH_2=C(R)-CH_2SiR'_3$ form via (i) Pd(II) allyl activation, (ii) silyl radical generation with photocatalyst and (iii) dual Ir(I) and Fe(II) catalysts for hydrosilylation of alkanes, via alkene formation, isomerization and hydrosilylation. Finally, a Ru(II)-catalyzed sp³C-H silylation of a methyl group of arylphosphine, directed by a P(III) atom, will be presented.

> and silylation. The C–Si bonds are used as temporary functional groups to further promote transformations leading to molecules which are difficult to achieve directly from C–H bonds. In addition, C–Si bonds are rather stable, and thus the formed silanes can tolerate different functional groups and be handled more easily than many reactive organometallic derivatives containing a more polar C–M bond.

> The regioselective catalyzed silylations of sp²C–H bonds into sp²C–SiR₃ groups were first developed and several reviews have already illustrated the success of the catalyzed silylation of sp²C–H bonds and the usefulness of this approach. Chatani in 2003¹⁴ and Goldman in 2011¹⁵ discussed early examples of silylation of sp²C–H bonds using ruthenium and iridium catalysts. Marciniec in 2005¹⁶ collected the catalyzed silylations of alkene C–H bonds and in 2012¹⁷ Hartwig compared borylations and silylations of sp²C–H bonds. In 2015 several reviews on catalytic silylation of sp²C–H bonds were presented by J. F. Hartwig,¹⁸ U. Sharma,¹⁹ C. Wang,²⁰ and Z. Xu,²¹ and the first three of them^{18–20} included

^a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China. E-mail: andonlee@163.com

^b Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France. E-mail: pierre.dixneuf@univ-rennes1.fr

[†] Dedicated to Prof. Christian Bruneau for his outstanding contribution to catalysis.

[‡] Electronic supplementary information (ESI) available: See DOI: 10.1039/ d0cs01392g

the first examples of catalyzed sp³C–H bond silylations. Shang and Liu²² collected in 2016 the silylations of sp²C–H bonds *via* radical processes. It is noteworthy that in 2017 M. Oestreich presented all the Friedel–Crafts sp²C–H bond silylations,²³ and recently he reviewed the various emerging strategies for C–H bond silylations, and briefly discussed the sp³C–H bond silylations.²⁴

In spite of the usefulness of the synthesis of reactive $sp^{3}C-Si$ bonds²⁵ their catalytic formation directly from $sp^{3}C-H$ bonds has been much less developed than from $sp^{2}C-H$ bonds. However, $sp^{3}C-SiR_{3}$ groups undergo easy transformation by oxidation into alcohols^{26,27} or into carboxylates directly from CO_{2} .²⁸ They also give cross-coupling reactions with suitable electrophiles,^{29,30} amination^{31,32} or halogenation^{33,34} including fluorination.^{35,36} In addition, the direct catalytic formation of a reactive $sp^{3}C-Si$ bond directly from an $sp^{3}C-H$ bond offers a greener alternative to produce reactive silanes rather than from silylhalides, from lithium or Grignard reagents or from hydrosilanes with alkylchorides.²⁵

This review will present the known metal-catalyzed sp³C–H bond silylations, discuss the catalytic mechanisms, and show the usefulness of the produced silane derivatives. Some early examples obtained in 2014 and earlier have been presented in the early 2015 reviews by J. F. Hartwig,¹⁸ U. Sharma,¹⁹ and C. Wang.²⁰ After highlighting these first examples, this review will discuss all examples of metal-catalyzed sp³C–H bond silylations since 2015 in more detail. The following sequence will be used to present the successful examples and will focus on the recent updates.

- After a few early and non-directed examples of sp³C-H bond silylations, the metal-catalyzed intermolecular silylations of sp³C-H bonds with silane directed by N-containing heterocycles,

thesis of new organic silicone compounds via C-H bond activation,

which take place mostly with Ir, Rh, and Ru catalysts, and the metal-catalyzed intermolecular silylations of sp³C–H bonds directed by amide type groups with Pd(II) catalysts, will be described first.

– Then will be presented successively (i) the catalyzed intramolecular silylations of sp³C–H bonds directed by the silylated hydroxy group, resulting from dehydrosilylation of alcohols, or hydrosilylation of ketones, with Ir(1) or Rh(1) catalysts, (ii) the catalyzed intramolecular sp³C–H bond dehydrosilylation directed by N–SiR₂H groups with Ir(1) catalyst and a hydrogen acceptor and (iii) the intramolecular silylations of unactivated sp³C–H bonds but in proximity to Si–H bonds of arylsilanes and alkylsilanes using an Ir(1) catalyst.

– The intermolecular catalyzed $sp^{3}C-H$ bond silylations of X–CH₃ groups into X–CH₂SiR₃ groups (X = B, Si, O, N, Ge, S), will then be discussed. They are mostly promoted by Ru(II) and Ir(I) catalysts in the presence of alkenes, with the exception of an yttrium catalyst for SCH₃ group silylation and copper catalysts for alkylsulfonamide silylation. Finally, formal silylations of allylic C–H bonds and the unique and promising example of a catalyzed methyl sp³C–H bond silylation reaction directed by phosphine will be presented.

2. The first steps in non-directed catalytic silylations of sp³C-H bonds

The first examples of the catalytic silvlation of a sp³ C–H bond were observed without the assistance of a directing group, but with modest efficiency. As early as 1992 Ishikawa *et al.*³⁷ studied the Ni(0)-catalyzed transformation of benzo-1,2-disilacyclobutene

Bin Li

silylation and hydrosilylation.

Bin Li was born in 1984 in Guangdong province, China. He received his doctoral degree in Chemistry from the University of Rennes (France) in 2013, with Prof. C. Darcel and Prof. P. H. Dixneuf. He is currently a full professor at Wuyi University in Jiangmen Guangdong province (China). His current research focuses on design and preparation of ruthenium nanoparticles and ruthenium complexes, and their applications in the catalytic syn-

Pierre H. Dixneuf

Pierre H. Dixneuf is Emeritus, Research Professor in Rennes, Bretagne, France. He created a Homogeneous Catalysis Center in Rennes in 1985: Ruthenium(1) in catalysis, C-C bond formation from alkynes, vinylidenes, cumulenes, enantioselective formation of amines, and alkene metathesis with indenylideneruthenium catalysts. He has pursued his current topic of C-H bond functionalisation since 2008, using ruthenium(1)-carboxylate

catalysts for (hetero)-arylations and alkenylations, including in water, and Rh(1) catalysts for modification of phosphines to improve catalyst systems. He has received international awards for research including: IUFrance member 2000, IFP-Academy of sciences 2006, Germany (A. v. Humbold, Wittig), Italy (Sacconi), Spain (Catalan), Chinese Chem. Soc. (1st prize to French Chemist in 2014), Academy of Sciences member: European EASA 2014, Portugal 2017, Indian, NASI 2020. and observed the activation/cleavage of benzene sp²C-H and mesitylene sp³C-H bonds to form related C-Si bonds (Scheme 1).

When benzo-1,2-disilacyclobutene with a Ni(PEt₃)₄ catalyst was refluxed in benzene, it led to the cleavage of one benzene sp²C-H bond and the formation of one Si-C(sp²) and one Si-H bond (Scheme 1a). The same reaction performed in deuterated benzene led to the disilyl product with Si-C₆D₅ and Si-D bond formation (Scheme 1b). In contrast, the use of mesitylene as the solvent led to one methyl sp³C-H bond activation and then silylation with the formation of sp³C-Si and Si-H bonds (Scheme 1c). The catalytic functionalization of C-H and C-D bonds is explained *via* their oxidative addition to the disilylnickel intermediate followed by the formation of Si-C and Si-H bonds (Scheme 1d).

In 1994 an example of sp³C–H bond silulation of an ethyl group was observed by Berry *et al.*³⁸ in their study of the hydrosilulation of an alkene ^tBuCH==CH₂ with Et₃SiH in the presence of Ru and Rh catalysts at 150 °C. Actually, besides the low production of silulated alkene, they observed a high yield of dihydrogenative dimerization of Et₃SiH into CH₃CH(SiEt₃)(SiHEt₂) with a new sp³C–Si bond (eqn (1)).

$$2 \text{ Et}_{3}\text{Si}-\text{H} \xrightarrow{t_{\text{Bu}}} \text{F}_{3}\text{Cat} \xrightarrow{\text{SiEt}_{3}} \text{H}_{3}\text{C}-\overset{\text{SiEt}_{3}}{\text{C}-\text{H}} \\ \xrightarrow{150 \,^{\circ}\text{C}} \text{SiHEt}_{2} \qquad (1)$$

$$Cat. = \text{Ru}(\text{H})_{2}(\text{SiEt}_{3})_{2}(\rho\text{-cymene}) \qquad 78\%$$

$$Cat. = \text{Rh}(\text{H})_{2}(\text{SiEt}_{3})_{2}(\rho\text{-cymene}) \qquad 83\%$$

Another unique non-directed silylation of $sp^{3}C-H$ bonds was observed by Tilley³⁹ in 2003 during the reaction of methane (150 atm) with H₂SiPh₂ at 80 °C using the scandium catalyst Cp*₂ScMe (eqn (2)).

$$\begin{array}{rcl} CH_4 & + & Ph_2SiH_2 & \underline{Cp^*_2ScMe (10 \text{ mol}\%)} \\ \hline 80 \ ^\circ C, \ 7 \ \text{days} & Ph_2Si(H)CH_3 \ + \ H_2 \\ \hline (150 \ \text{atm}) & cyclohexane \end{array}$$

Scheme 1 Ni(0)-Catalyzed silylation of $\mathrm{sp}^3\mathrm{C-H}$ bonds with benzo-1,2-disilacyclobutene.

 $Cp*_2ScSiH_2Mes$ has been shown to react with CH_4 to give $Cp*_2SiCH_3$ and $MesSiH_3$ and then $Cp*_2ScH$ and $MesSi(CH_3)H_2$ (eqn (3)) but it is not clear yet as to which species $Cp*_2ScSiH_2Mes$ or $Cp*_2Sc-H$ activates the methane C-H bond before silylation.

$$\begin{array}{rcl} Cp_2^*ScSiH_2Mes &+ & CH_4 & \longrightarrow & Cp_2^*ScCH_3 &+ & MesSiH_3 \\ & & & & Cp_2^*ScH &+ & MesSi(CH_3)H_2 \end{array}$$
(3)

In 2005 Hartwig developed the first intramolecular dehydrogenative regioselective coupling of a silane Si–H bond with the aliphatic δ -C–H bond to generate the 5-membered cyclic organosilane in 80–88% yield by using Tp^{Me2}PtMe₂H (Tp^{Me2} = hydrido tris(3,5-dimethylpyrazolyl)borate) as the catalyst (eqn (4)).⁴⁰

$$HSi \left(\begin{array}{c} & Tp^{Me_2}Pt(Me)_2(H) \\ \hline & 200 \text{ }^{\circ}C, 72 \text{ h} \end{array} \right)_3 \xrightarrow{\text{ }} {}^{n}Bu_2Si \xrightarrow{\text{ }} {}^{+} H_2 \qquad (4)$$

This was the first observation of a three-step process: the initial formation of a Si-metal bond from a Si-H bond, activation by the metal site of one sp³C-H bond coming at its proximity, followed by Si-C bond formation.

3. Metal-catalyzed intermolecular silylations of sp³C–H bonds directed by N-containing heterocycles

An early example of catalytic sp³C–H bond silylation directed by pyridine was reported by Kakiuchi in 2004.⁴¹ Ru₃(CO)₁₂ was shown to catalyze benzylic silylation with triethylsilane of 2-arylpyridines containing a methyl group at the aryl *ortho* position only, not at the *para* position, thus showing the directing role of the pyridine nitrogen atom. The reaction took place in toluene at reflux in the presence of norbornene for hydrogen capture with norbornane formation (Scheme 2).⁴¹

However, the silylation of an aryl *ortho* sp²C–H bond is faster than that of an *ortho* methyl sp³C–H bond with $HSiEt_3$ and the silylation of an *ortho* ethyl group of arene does not take place. Under similar conditions the silylation of *ortho* methyl groups of arenes can be directed by other N-containing heterocycles such as quinoline, pyrazole or arylhydrazone (Scheme 3).⁴¹

In 2012 Sato *et al.*⁴² showed that $[IrCl(cod)]_2$ could catalyze the regioselective silvlation of sp³C–H bonds of arene methyl groups directed by quinolone, but this time without the presence of the hydrogen trap norbornene (Scheme 4(a)).⁴² Ru₃(CO)₁₂ catalysts led to the same product in 93% under similar conditions but in the presence of norbornene. It is

Scheme 2 Ru(0) catalyzed silylation of $sp^{3}C-H$ bonds directed by pyridine.

Scheme 3 Ru(0) catalyzed silylation of $sp^{3}C-H$ bonds directed by N-heterocycles.

shown that with this Ir(1) catalyst the *ortho* aryl sp²C–H bond silylation is faster than that of a sp³C–H bond when it is directed by pyridine, likely because of a more easily generated 5-membered metallacycle intermediate with respect to the 6-membered intermediate required for *ortho* methyl activation (Scheme 4(b)).⁴²

The importance of the $sp^{3}C-H$ benzylic silylation was shown by Sato⁴² for the direct access to carboxylates from the silylated products by action of CO_{2} in the presence of fluoride, whereas the $sp^{2}C-Si$ bond is inert toward carboxylation (Scheme 5).⁴² This reaction motivates the search for benzylic silylation when the direct carboxylation of $sp^{3}C-H$ bonds is not easily performed.

Sato has also shown that, in the presence of $HSiEt_3$, the Ir(I) and Rh(I) catalysts $[Ir(OMe)(cod)]_2$ and $[RhCl(COD)]_2$ were able to silylate a sp³C-H bond of a methyl group bonded to the nitrogen atom of 2-dimethylaminopyridine, thus directed by

Scheme 5 Carboxylations of silylated benzyl groups with CO₂

Scheme 6 Ir(i) and Rh(i) catalyzed silylation of $C(sp^3)$ -H bonds adjacent to a nitrogen atom and directed by pyridine.

pyridine nitrogen itself (Scheme 6).⁴³ The Rh(i) catalyst operates only in the presence of the additive cyclooctoadiene COD (1 equiv.) to eliminate the formed hydrogen whereas the latter is not needed for the Ir(i) catalyst which is then not deactivated by *in situ* generated hydrogen.

However, the Rh(I) catalyst is more active for the silylation of the N–H bond compared to the NCH₃ C–H bond of 2-methylaminopyridine.⁴³ The resulting N–CH₂SiEt₃ groups can also be transformed into the carboxylate group N–CH₂CO₂Me upon reaction with CO₂ and CsF followed by the reaction of MeI and Cs₂CO₃.⁴³

Sato also showed that the same catalyst $[Ir(OMe)(cod)]_2$ could promote the silylation with HSiEt₃ of the alkyl group at the beta carbon of 2-ethyl and 2-isopropyl pyridine but with low yields of 20 and 34% respectively.⁴³

In contrast, using the $Ru_3(CO)_{12}$ catalyst, Jingsong You in 2016⁴⁴ achieved the successful activation and silylation of the sp³C–H bonds of the alkyl group of 2-alkyl pyridines at the beta carbon in the presence of 3 equiv. of norbornene as the hydrogen trap (Scheme 7).⁴⁴ The reaction shows that the silylation is favoured at the alkyl beta carbon position and tolerates functional groups on the pyridine ring (OMe, CO₂R, Ph). Mechanism studies reveal that sp³CH bond cleavage is reversible and not the rate-determining step.⁴⁴ However, this catalytic system was not operative for the sp³CH silylation of 2-(dimethylamino)pyridine as previously described with a Rh(1) catalyst (Scheme 6).⁴³

Fukumoto in 2017⁴⁵ succeeded in the silylation of the sp³C-H bonds of methyl groups at the *para* position of pyridine derivatives. $Ir_4(CO)_{12}$ was used as the catalyst precursor with HSiEt₃ in

Scheme 7 Ruthenium-catalyzed intermolecular silulation of $C(sp^3)$ -H bonds at the 2-alkyl group of pyridine.

Scheme 8 $\,$ Ir_4(CO)_{12} catalyzed silylation of the alkyl group of 4-alkyl pyridines at the $\alpha\text{-carbon}.$

the presence of norbornene in toluene at 80–100 $^{\circ}$ C (Scheme 8).⁴⁵ The reaction does not involve the silylation of the methyl group at the 3-position. It tolerates –NMe₂, –Cl, –Br, and –OMe groups on the pyridine and is regioselective at the alpha carbon of the alkyl chain. The silylation of 2,4-dimethyl pyridine requires more drastic conditions (120 $^{\circ}$ C, 48 h) to produce 12% of the silylated product at the 4-methyl group. Pyridine does not play the directing group role in this case but favours 4-alkyl sp³C–H bond activation by deprotonation as shown in the mechanism in Scheme 9.⁴⁵

As well as $Ir_4(CO)_{12}$, $Ir(acac)(CO)_2$ is also active at 80 °C (20 h) for the same reaction to produce 74% of 4-triethylsilylmethylpyridine with 15% of the disilylated compound. $[Ir(OMe)(cod)]_2$ is also operative but under one atmosphere of carbon monoxide.

The proposed mechanism by Fukumoto (Scheme 9)⁴⁵ is based on deuteriation studies with DSiEt₃. It suggests the initial oxidative addition of the H–Si bond to the Ir(0) species I derivative of $Ir_4(CO)_{12}$ which leads to the formation of a $[Ir-H]^-$ species and silvlation of the pyridine nitrogen III. The $[Ir-H]^-$ hydride deprotonates the 4-methyl group to give the enamine V which is silvlated to give the intermediate VI which then affords the 4-silvlmethyl pyridine. The *in situ* formation of IrH_2 species IV allows the insertion of the norbornene double bond and reductive elimination to produce norbornane and to regenerate the Ir(0) catalytic species.⁴⁵

In contrast, Fukumoto recently described the catalytic sp³CH bond regioselective silylation at the benzylic position

Scheme 9 Proposed mechanism for $Ir_4(CO)_{12}$ catalyzed silylation of 4-alkyl pyridines.

Scheme 10 $Ir_4(CO)_{12}$ catalyzed benzylic sp³C-H bond silylation of 2-alkylpyridine.

of 2-alkylpyridines leading only to 2-(1-silylalkyl)pyridines. The silylation is performed using $HSiEt_3$ and $Ir_4(CO)_{12}$ as the catalyst in the presence of norbornene as the hydrogen trap but in the presence of a 3,5-dimethylpyridine ligand (Scheme 10).⁴⁶ Thus the 3,5-dimethylpyridine modifies strongly by coordination the Ir(0) catalyst which without this ligand favours silylation at 4-methyl pyridine (see Scheme 8).⁴⁵

A mechanism similar to that described in Scheme 9 is proposed for this reaction and based on the initial formation of $[Ir-H]^-$ and the (pyridine)N-SiEt₃⁺ cation, then upon the deprotonation of 2-methylpyridine methyl group and silylation of the resulting methylene group.

Several other catalytic dehydrogenative silylations of sp³C–H bonds have been directed by the nitrogen atom of heterocycles such as oxazolines, azoles and quinolines with Ru(π), Ir(π) and Ru(π) respectively, for which the nature of key ligands on the metal catalysts play a crucial role.^{47–49}

An excellent example was described by Murata⁴⁷ in 2016 who showed that the oxazoline nitrogen atom could direct the silylation of the sp³C-H bond of the 2-alkyl group but regioselectively at the β -carbon atom. The reaction is performed only efficiently with HSiMe(OSiMe₃)₂ in the presence of a Ru(n) catalyst [Cp*RuCl₄ at 180 °C in cyclohexane. The Ru(m) derivatives [Cp*RuCl₂]₂ and RuCl₃·*n*H₂O also display a rather good catalytic activity for this reaction which also allows disilylation at the alkyl β -carbon atoms (Scheme 11).⁴⁷ However, the nature of the silane is crucial as HSiEt₃ and HSiMe₂(OMe) are not efficient for this reaction. The silylation can be extended efficiently to 2-ethylpyridine (89%) and 1-ethylpyrazole (68%). The interest of the β -silylated 2-ethylpyridine is demonstrated using the Fleming–Tamao oxidation reaction with H₂O₂/KHF₂ which produced the corresponding alcohol PyCH₂CH₂OH.

To understand the mechanism, DFT calculations were made using HSiMe₃ and Ru–H as the initial reagents.⁴⁷ They showed the easy interaction of one β -C–H bond with a H–Ru–N(heterocycle) intermediate to eliminate H₂ and to form a Ru(II)cyclometalate. In contrast, the oxidative addition of the H–Si bond to the (cyclometalate)Ru species and β -carbon silylation require higher energy ($\Delta G^{\ddagger} = 35.9$ kcal mol⁻¹).

Scheme 12 Pincer hydride-Ir(μ)-catalyzed silylation of 2-alkyl azoles at alkyl α -carbon.

In contrast, Fukumoto in 2018⁴⁸ using a pincer H–Ir(m) catalyst showed that the α -sp³C–H bond silylation of 2-alkyl-1,3-azoles was readily performed in the presence of cyclopentene, 3,5-dimethylpyridine ligand, but also of the salt NaB(C₆F₅)₄ or NaB(C₆H₃(CF₃)₂)₄ containing non-coordinating anion (Scheme 12).⁴⁸ The silylation is performed with HSiEt₃. In contrast when HSiEt₂Me or HSiEtMe₂ are used the disilylation of the α carbon is favored. It is observed that when the azole nitrogen is sterically hindered the yields are lower.

The plausible mechanism in the absence of the hydrogen trap is shown in Scheme 13.⁴⁸ The $[Ir-H]^+$ species arising from chloride displacement of the pincer Ir(m) complex in the presence of a bulky conteranion is expected to trap the silane hydride to give the $(H)_2Ir(m)$ intermediate (IV) and the *N*-silylated 3,5-dimethylpyridine cation III can transfer the R_3Si^+ cation to the azole nitrogen forming (VI) thus favoring the methyl deprotonation to give VII. The migration of the silyl group to the methylene carbon affords the silylated product VIII. The catalytic species I is regenerated by protonation of Ir(i) intermediate V with the cationic compound VI. In the presence of alkene (cyclopentene) as the H_2 trap a similar mechanism takes places but alkene inserts into one Ir–H bond of IV to give the alkyl-Ir–H intermediate which after reductive elimination offers cycloalkane and Ir(i) V more easily.

Finally, during the evaluation of sp^2C-H silylation of 2-aryl N-heterocycles with $HSiEt_3$ in the presence of norbornylene,

Scheme 13 A plausible reaction mechanism in the absence of alkene as a hydrogen acceptor.

as the hydrogen acceptor, and using the efficient Ru(n) catalyst $RuH(Cl)(CO)(PPh_3)_3/KOAc$, Bin Li^{49-51} showed in 2019 that the silulation conditions applied to 8-methylquinoline preferentially led to the sp³C–H bond silulation of the 8-methyl group (Scheme 14).⁴⁹ In this reaction the role of KOAc is crucial to generate a Ru(H)(OAc) intermediate on which oxidative addition of a H–SiR₃ bond is possible.

4. Palladium(II) catalyzed intermolecular silylations of sp³C–H bonds with amide type directing groups

Since 2014 several reports gave evidence that amide functions RNHCO-alkyl, R₂NCOCONH-alkyl or ArCONH-alkyl could direct metal catalyzed silylations *via* directed alkyl sp³C-H bond activation and intermolecular silylation with R₃Si–SiR₃. The metal catalysts are based mostly on palladium(π) catalysts Pd(OAc)₂ or Pd(OPiv)₂. One rare example of α -silylation of benzamides with *t*BuMgCl/dtbpy will also be presented but it involves a [1,5]-hydrogen transfer.

Kuninobu and Kanai⁵² were the first to report in 2014 that the simple $Pd(OAc)_2$ catalyst could promote the silylation of aryl sp²C-H bonds of RNHCO-aryl with R₃Si-SiR₃. At the same time they showed a few examples of alkyl sp³C-H bond silylation with Me₃Si-SiMe₃ of carboxamides directed by 8-aminoquinoline in

Scheme 14 $\,$ sp ^3C-H bond silylation with H–SiEt_3 of 8-methylquinoline with a Ru(11) catalyst.

Scheme 15 $Pd(OAc)_2$ catalyzed sp^3C-H silylation of carboxamide alkyl groups with hexamethyldisilane.

(heteroaryl)NHCO-alkyl derivatives with Pd(OAc)₂ catalyst and Ag₂CO₃ in DMF (Scheme 15).⁵² These 8-aminoquinoline derivatives were able to direct sp³C–H bond activation and functionalization of the alkyl group at the β -carbon of the carbonyl function.

Just after, Y. Zhao⁵³ reported in 2015 that the oxalyl amide group could favour the sp³C-H bond silylation, with Me₃Si-SiMe₃ and Pd(OAc)₂ catalyst of alkylanilines in the presence of 3 equiv. AgOAc and K₃PO₄ at 140 °C (Scheme 16).⁵³ The oxalyl amide group thus directs sp³C-H bond activation with Pd(OAc)₂. The silylation takes place at the *ortho* methyl group of *ortho* methylaniline derivatives or of the cyclopropyl group of the amide ester group. The δ -silylation takes place when no hydrogen is present at the γ -position or at the *ortho* methyl of benzylamide derivatives.

S.-Y. Zhang in 2016 succeeded in the silylation with hexamethyldisilane of remote sp³C–H bonds at the β -carbon of 8-aminoquinoline amide derivatives as directing groups. The reaction catalyzed by Pd(OAc)₂ needs an oxidant such as benzoquinone (BQ) at 110 °C in DMA (Scheme 17).⁵⁴ This silylation can be applied to *N*-phthalimide (Phth) protected chiral amino acid derivatives with good diastereoselectivity.

The proposed mechanism is shown in Scheme 18,⁵⁴ and involves the bicyclometalate **A** formation by N–H and C_{β} –H deprotonation, and its disilylation at O and Pd atoms or at the Pd site only in intermediate **B**. After reductive elimination with C–Si bond formation to give product **C**, the Pd(0) is reoxidized into Pd(OAc)₂ with benzoquinone and the addition of acetic acid.

Scheme 16 Palladium catalyzed $sp^{3}C-H$ silylation with oxalyl amide directing groups.

Scheme 17 sp³ C–H bond silylation at the β -carbon of carboxamides derived from 8-amino quinoline.

Scheme 18 Proposed mechanism for silulation of the β -carbon of carboxamides.

Bing-Feng Shi *et al.* found in 2016 the Pd-catalyzed intermolecular silylation of unactivated primary and secondary sp³C–H bonds of *N*-phthaloyl (Phth) protected α-amino acids but containing the directing group 8-aminoquinoline (AQ), which is easy to be removed by action of BF₃·Et₂O in MeOH. A variety of chiral β-silylamino acids can be prepared with retention of configuration and high diastereoselectivity using Me₃SiSiMe₃, Pd(OAc)₂ catalyst, Ag₂CO₃ (0.5 equiv.) and DMBQ = 2,6 dimethoxyl-1,4-benzoquinone as the oxidant to regenerate the Pd(II) catalyst (Scheme 19).⁵⁵

2-Aryl propionic acids were treated by Bing-Feng Shi under slightly different conditions using the $Pd(OAc)_2$ catalyst but with S-BINAPO₂H (30 mol%) and Ag₂CO₃ (2 equiv.) and silylation occurred at the β -methyl group (Scheme 20).⁵⁵ Stoichiometric reactions show that the isolated bicyclic cyclometalate arising from deprotonation of NH and one methyl C–H bond is

Scheme 19 Synthesis of chiral TMS-amino acid derivatives via Pd(n) catalytic silylation.

Scheme 20 Pd(ii)-Catalyzed silylation of primary C-H bonds of 2-aryle propionic acids.

thermodynamically more stable than the *N*,*N* cyclometalate arising from the deprotonation of the NH group only. Importantly, for this silylation the sp³C–H silylation of alkyl group is favoured over the *ortho* sp²C–H bond silylation of the aryl group.

Debrabata Maiti succeeded in 2017⁵⁶ to perform the regioselective γ -silylation with hexamethyldisilane of amide derivatives of amino acids and 8-aminoquinoline (Scheme 21a).⁵⁶ Pd(OPiv)₂ appears to be the best catalyst partner when associated to the ligand 2-chloroquinoline L in the presence of Ag₂CO₃ and NaHCO₃. Several *N*-phthalimide protected natural α -amino acid derivatives were also γ -silylated under similar conditions such as the derivatives of L-valine, L-isoleucine and *tert*-butyl leucine (Scheme 21b).⁵⁶

The same reaction applied to γ -arylated amides, derivatives of 8-aminoquinolones, using the Pd(OPiv)₂ catalyst and associated with the ligand 2-chloroquinoline furnishes only the sp³C–H bond γ -silylated products (Scheme 22a).⁵⁶ The similar γ -diarylated products under the same conditions only lead to the γ -silylation of the remaining methyl group (Scheme 22b).⁵⁶ The germylation with Me₃Ge–GeMe₃ of the same amino acid derivatives was also successfully performed.⁵⁶

The plausible mechanism of the reaction is presented in Scheme 23.⁵⁶ It is based on H/D kinetic studies and is assisted by computational studies. It involves γ -C–H methyl activation *via* a deprotonation step first and the initial formation of the 6-membered cyclometalates I and II. The oxidative addition of Me₃Si–SiMe₃ to the Pd(II) intermediate gives III. Then the reductive elimination to give the C(γ)–SiMe₃ bond leads to IV, and the reductive elimination leading to the γ -silylated product releases PivOSiMe₃ and Pd(0) species which needs to be reoxidized by Ag⁺.

Recently, in 2019, Bing-Feng Shi succeeded in performing the γ -sp³C–H bond silylation of peptides and α -aminoacids, using the Me₃Si–SiMe₃ and Pd(OAc)₂ catalyst, but assisted by a picolinamide (PA) directing group. This silylation has been applied to various amino acids such as valine, leucine-2aminobutyric acid and to amino alcohol derivatives (NHPA: –NHCO(2-pyridine)) (Scheme 24).⁵⁷ The reaction requires the

Scheme 23 Mechanistic cycle for palladium-catalyzed γ -silylation of quinolamide derivatives.

presence of Ag_2CO_3 and KHF_2 and is improved by the presence of benzoquinone derivatives such as dichlone as the oxidant to regenerate the Pd(n) catalyst. The picolinamide group is easily removed after silvlation upon reaction with Zn/HCl.

Under closely related conditions the reaction can be applied to the γ -silylation of 15 various dipeptides; in this case the preferable oxidant is 2,6-dichloro-1,4-benzoquinone (2,6-DiClBQ) with the picolinamide directing group (NHPA: –NHCO(2-pyridine)) (Scheme 25).⁵⁷

Bing-Feng Shi showed that this γ -silylation can also be extended to tripeptides and tetrapeptides under similar conditions using the Pd(OAc)₂ catalyst, but using 2-chloro-1,4-naphtoquinone (2-ClNQ) as the oxidant instead (Scheme 26).⁵⁷ The picolinamide directing group in these peptides is shown to be removed easily by the action of Zn/HCl in THF. It can then be replaced by the useful protecting the Fmoc group upon reaction with FmocCl.

Another quite different intermolecular sp³C–H bond silylation process of amides was discovered in 2016 by Xiaoming Zeng *et al.*⁵⁸ for the functionalization of benzamides in which the amide does not play the role of the directing group for C–H bond activation by metal catalysts as previously thought. They succeeded in preparing α -silabenzamides *via* sp³C–H bond silylation but involving a [1,5]hydrogen transfer to the benzamide *ortho* C–F bond, not a catalytic sp³C–H bond silylation. The reaction shown in Scheme 27 is

Scheme 25 Pd(II)-Catalyzed sp³C-H bond γ -silylation of dipeptides.

Scheme 26 Pd(II)-Catalyzed sp³C–H bond γ -silylation of tripeptides and tetrapeptides.

performed with ClSiEt₃, or other trialkyl silyl chlorides, on reaction with *t*BuMgCl and 4,4'-di-tertbutylbipyridine (dtbpy) at only 50 °C. The [1,5] hydrogen transfer is demonstrated to occur *via* the study of a N-CD₃ labelled benzamide derivative.

Kinetic studies suggest that the α -sp³C-H bond cleavage is the rate determining step and that the *ortho* C-F bond is not cleaved in the absence of chlorosilane. To show the advantage of this regioselective silylation the prepared α -silabenzamides were easily functionalized upon reaction of the C-Si bond to give a variety of

Scheme 27 Metal-catalyst free, site-selective silylation of aliphatic C–H bonds at the α -position through [1,5]-hydrogen transfer.

N-formyl (PhCONHCHO), β-hydroxyl (PhCONHCH₂CHOHR) or β-amino (PhCONHCH₂CH(NHR)Ph) benzamide derivatives.⁵⁸

5. Metal-catalyzed intramolecular silylations of sp³C–H bonds directed by hydrosilylated hydroxy and ketone groups

As early as 2012 Hartwig⁵⁹ showed that O–SiH(alkyl)₂ groups, arising from catalyzed dehydrosilylation with silane alkyl₂SiH₂ of the hydroxy group or by hydrosilylation of the ketone carbonyl group, could lead to regioselective intramolecular silylation of the γ -sp³C–H bond and hydrogen elimination to form 5-membered oxasiloxane. This was the first example of intramolecular sp³C–H bond silylation without a directing group but by proximity of Si–H and C–H (see also eqn (4)).⁴⁰ The efficient catalyst was based on iridium(i) in the presence of a bulky phenanthroline ligand. One major advantage of this regioselective silylation is that it offers easy oxidation of the formed oxasiloxanes, with H₂O₂, to generate 1,3-diols, or leads to the corresponding 1,3-acetates upon further treatment with Ac₂O (Scheme 28).

Thus, the hydroxy and ketone groups were first dehydrosilylated and hydrosilylated respectively with $alkyl_2SiH_2$ in the presence of the catalyst $[Ir(OMe)(cod)]_2$ in THF. Then the intramolecular dehydrosilylation was performed using the same Ir(1) catalyst but in the presence of 3,4,7,8-tetramethylphenanthroline. The addition of norbornene allowed trapping of the generated hydrogen before the C–Si bond formation to form the cyclic oxasiloxanes (Schemes 28 and 29). The *in situ* treatment of the formed oxasiloxane with hydrogen peroxide leads to 1,3-diol which upon reaction with Ac₂O affords the 1,3-diacetate at room temperature (Scheme 29).⁵⁹

The same year, using the Hartwig procedure, Pedersen and Bols⁶⁰ developed a one-pot sequence process to synthesize fully protected L-mannoside in 82% yield only using 4 steps from a methyl glycoside derivative, including Si-H/O-H cross-coupling

Scheme 28 Silylation of the alkyl sp 3 C–H bond directed by a silylated hydroxy group or ketone.

 $\label{eq:scheme 29} \begin{array}{l} \mbox{Iridium(i) catalyzed silylation of alcohol and ketone followed} \\ \mbox{by intramolecular γ-sp^3C-H bond silylation.} \end{array}$

Scheme 30 One-pot sequence for the synthesis of fully protected L-mannoside involving intramolecular γ -sp³C-H bond silylation.

reaction, intramolecular sp³C-H silylation, Fleming-Tamaotype oxidation, and acetylation (Scheme 30).

Furthermore, this method could also be applied to synthesize fully protected L-galactosides from the corresponding L-fucoside through C–H silylation and Fleming–Tamao oxidation (Scheme 31).⁶⁰

The mechanism of Ir(ι)/phenanthroline catalyzed silylation of the γ -sp³C–H bond of 2-methyl cyclohexanol was studied by Sunoj *et al.*⁶¹ using DFT calculations. The proposed mechanism is presented in Scheme 32. It is shown that in the presence of

Scheme 32 Mechanism of conversion of (hydrido)silyl ether to oxasilolane catalyzed by neutral [IrH(nbe)(phen)].

Scheme 33 Intramolecular dehydrosilylation of secondary C–H bonds and synthesis of 1,3-diols.

SiH₂Et₂ the $[Ir(OMe)(cod)]_2$ catalyst alone first performs the silylation of the alcohol. Then the Ir–H(Phen) complex can coordinate norbornene before allowing the Si–H oxidative addition. The alkene allows insertion into the Ir–H bond and reductive elimination of alkane. Then the C–H bond oxidative addition of the γ -sp³C–H bond takes place followed by reductive elimination with C–Si bond formation. The last step of the reductive elimination to form the C–Si bond is the rate-determining step of the reaction (TS: 14.6 kcal mol⁻¹) whereas the C–H bond activation needs lower energy (TS: 9 kcal mol⁻¹).

Hartwig⁶² then applied his strategy to generate the oxasilane O–SiEt₂H group, from the hydroxy group or the corresponding ketone, and to direct the intramolecular regioselective γ -sp³C–H bond dehydrosilylation of intermediate (R₂C(OSiEt₂H))–CH₂CH₂CH₂CH₂R' to form the oxasilolanes *in situ*. The latter can then be *in situ* oxidized into 1,3-diols with TBHP peroxide (Scheme 33). This dehydrosilylation reaction catalyzed by [Ir(OMe)(cod)]₂/Me₄Phen allows the diastereoselective synthesis of a variety of 1,3-diols.

The primary $K_{\rm H}/K_{\rm D}$ KIE = 2 indicates that the C–H bond cleavage is the rate-limiting step for this directed intramolecular sp³C–H bond silylation. The catalytic dehydrosilylation of the derivatives R₂C(OSiEt₂H)CH₂CH₃ and R₂C(OSiEt₂H)CH₂CH₂CH₂CH₃ show that the silylation of the γ -CH₃ group is 49 times faster than that of the γ -methylene group, thus faster at the primary than at the secondary γ -C–H bond.

In 2015 Jeon *et al.*⁶³ developed a method for the initial hydrosilylation of ester, ketone and aldehyde carbonyl groups followed by sp²C–H bond *ortho* silylation of aromatic systems. The first hydrosilylation of the carbonyl group is performed using the [IrCl(COE)]₂ catalyst with H₂SiEt₂. The following intramolecular silylation was catalyzed by [RhCl(NBD)]₂/ $P(C_6H_4OMe)_3$ in the presence of norbornene (Scheme 34). The same reaction could be applied to aromatic ketones and aldehydes using the Rh(1) catalytic system only.

Interestingly, when the reaction was applied to an aromatic ester containing an *ortho* methyl group, similar successive Ir(I)

Scheme 34 Sequential reductive carbonyl and arene o-CH silylations with both Ir(i) and Rh(i) catalysts.

Scheme 35 Sequential reductive benzylic sp $^{3}C-H$ silylation of aromatic esters, ketones and aldehydes with Rh(i) catalysts.

Scheme 36 Rh catalyzed enantioselective silulation of cyclopropyl sp 3 C– H bonds.

and then Rh(i) reactions led to the reduction of the carbonyl group first and then to the sp^3C-H benzylic bond intramolecular hydrosilylation to afford the benzoxaline derivative. From aromatic ketones and aldehydes containing arene *ortho* methyl groups only a Rh(i)/phosphine catalyst led to their carbonyl hydrosilylation, and then after NBE addition the intramolecular dehydrosilylation took place and the benzoxaline derivative was formed (Scheme 35).

Later on, Hartwig developed the first chiral-rhodium(m) catalyzed highly enantioselective C–H bond silylation of the cyclopropyl C–H bond to form a five-membered ring oxasilolane. Up to 89% isolated yield and 95% ee of oxasilolane were obtained by using a sequence of $[Ru(PPh_3)Cl_2]/EtSiH_2$ catalytic system followed by the $[RhCl(cod)]_2/(S)$ -DTBM-SEGPHOS/cyclohexene catalytic system (Scheme 36).⁶⁴ The H/D KIE value is 2.1 which indicates that the Rh catalyzed C–H bond cleavage is the turnover-limiting and enantioselectivity-determining step.

Subsequently, the Hartwig group⁶⁵ developed a rhodiumcatalyzed site selective silylation of alkyl δ -C–H bonds, when no C–H bond was present at the γ -carbon atom, to form six-membered oxasilolanes with the hydroxyl group as the initial directing group. The catalytic reaction takes place in the presence of the [Rh(Xantphos)Cl] catalyst with norbornene as the hydrogen acceptor (Scheme 37).⁶⁵ The oxidation of the resulting sixmembered oxasilolanes led to 1,4-diols in high yields with tolerance of many functional groups. The mechanistic studies show that the (Xantphos)Rh(SiEt₂OR)(nbe) is the key complex for

Scheme 37 RhCl(Xantphos) catalyzed alcohol-directed δ -C–H silylation and 1,4-diol synthesis.

Scheme 38 RhCl(Xantphos) catalyzed δ -C-H silylation of oxysterol.

the rate-resting state and that the oxidative addition of the δ C–H bond to Rh(1) is the rate-limiting step of the process.

This method could be applied to functionalize the natural oxysterol compound 20(*S*)-hydroxycholesterol with alcoholdirected oxygenation at the C18 position *via* the [Rh(Xantphos)Cl] catalyzed δ -sp³C–H bond silylation followed by the Fleming–Tamao oxidation (Scheme 38).⁶⁵

Hartwig⁶⁶ in 2018 applied his method for intramolecular silylation of sp³C–H bonds observed with a Rh(1) catalyst, for regioselective dehydrosilylation of the alkyl β -C–H bond directed by a perfluorinated ester group, which was successful with the Ir(1) catalyst. First, tertiary alcohols were esterified into perfluorinated

Scheme 39 Hydrosilylation of fluorinated esters, intramolecular $sp^{3}C-H$ bond silylation and oxidation.

esters which were treated with Et_2SiH_2 with the catalyst $[Ir(OMe)(cod)]_2$ to afford quantitatively the carbonyl hydrosilylation product containing the O–SiEt₂H group. Then the addition of the $[Ir(OMe)(cod)]_2/Me_4$ Phen catalyst allowed the regioselective β -C–H bond silylation with dehydrogenation in the presence of norbornene to form the 6-membered dioxasililanes (Scheme 39).

These perfluorinated esters can be used as starting substrates to produce a variety of natural 1,2-diols,⁶⁶ by successive Ir(1) catalyzed β -C-H bond silvation and then oxidation with H₂O₂ according to the Tamao–Fleming reaction.

6. Catalyzed regioselective intramolecular sp³C–H bond dehydrosilylation of silylated amine NH bonds

In 2014 Hartwig showed that secondary aromatic amines could direct the silylation with H_2SiEt_2 of N–H bonds first with the $[Ir(OMe)(cod)]_2$ catalyst alone, followed by the intramolecular silylation of the aryl *ortho* sp²C–H bond using the same catalyst, but with an additional phenanthroline ligand $[Ir(OMe)(cod)]_2$ /Me₄Phen catalyst and in the presence of norbornene to eliminate the hydrogen.⁶⁷ This principle was then applied to secondary aryl amines containing an *ortho* alkyl group which led to the initial Ar(R)N–H transformation into (hydro)silylamines Ar(R)NSiHEt₃ first and then to the intramolecular alkyl sp³C–H bond silylation of *ortho* methyl groups and of the secondary benzylic sp³C–H bond at the γ -position of the N(SiHEt₂) group to produce a variety of azasilolanes (Scheme 40a).

The latter azasilolanes were opened during chromatography to produce the corresponding silanols (Scheme 40b). The reaction successively used the same two iridium(i) catalyst systems which tolerated many functional groups (Br, MeO,

Scheme 40 sp 3 C–H silylation of *N*-2-alkylanilines and formation of azasilolanes and silanols.

Scheme 41 Selective C-H silylation of aliphatic amines and oxidation into 1,2-amino alcohols.

Scheme 42 Intramolecular $sp^{3}C-H$ silylation of aliphatic amines into silapyrrolidines.

OSiR₃, OAc). The silanols can be oxidized easily with H_2O_2 to form aromatic secondary amines with γ -hydroxy groups.

Hartwig recently reported the intramolecular β -selective silylation of unactivated sp³C–H bonds of alkylamines.⁶⁸ The reaction requires the initial formation of the N–CH₂–SiHMe₂ group by reaction of a secondary alkyl amine with ClCH₂SiHMe₂. Then intramolecular alkyl silylation affords a cyclic silane which can be oxidized into 1,2-aminoalcohol (Scheme 41).

The β -selective intramolecular silvlation of amines is performed with [Ir(OMe)(cod)]₂ and a trimethyl phenanthroline ligand L in the presence of an hydrogen acceptor (NBE) (Scheme 42).⁶⁸ Many functional groups are tolerated such as alkenes, C–F bonds or ether groups.

The formed silapyrrolidines can be oxidized easily with *t*-BuOOH to produce 1,2-amino alcohols (Scheme 43). These 1,2-amino alcohols are easily transformed into *N*-protected carbamates by treatment with Boc_2O (Scheme 43).

Hartwig also performed enantioselective intramolecular dehydrosilylation of silylamines.⁶⁸ The silylation reaction has been carried out using an $[Ir(OMe)(cod)]_2$ catalyst but with a

Scheme 44 Enantioselective intramolecular C–H silylation of aliphatic amines.

chiral pyridylimidazoline ligand L^* . The chiral ligand L^* containing an *N*-alkyl imidazoline has led to good enantioselectivities (Scheme 44).⁶⁸

7. Intramolecular silylations of sp³C–H bonds in proximity to Si–H bonds

7.1 From arylsilanes

The intramolecular silylation of $sp^{3}C-H$ bonds of arysilanes without a directing group was observed by Kuninobu and Takai with a Rh(1) catalyst RhCl(PPh₃)₃ in 2013 upon reaction of the diphenylhydrosilane containing an *ortho* methyl group (Scheme 45).⁶⁹ Thus the $sp^{3}C-H$ intramolecular silylation appreared to be easier than the expected aryl $sp^{2}C-H$ silylation.

This first example led this group to discover a general intramolecular sp³C–H bond silylation of arylsilanes containing an *ortho* alkyl group, to form a 5-membered cyclic silane, with a catalytic system based on [RhCl(cod)]₂ and diphosphine Ph₂P(CH₂)₃PPh₂ (dppp) (Scheme 46).⁶⁹ The proposed reaction mechanism suggested the initial insertion of the Rh(I) species

Scheme 45 Rhodium(i)-catalyzed silylation of aromatic sp^2C-H and benzylic sp^3C-H bonds.

Scheme 43 Synthesis of 1,2-amino alcohols, derived from sp^3C-H silulation, and of their *N*-protected carbamates.

Scheme 46 Rhodium-catalyzed intramolecular silvlation of unactivated $sp^3C\text{-H}\xspace$ bonds.

Scheme 47 Rhodium-catalyzed dehydrogenative silulation leading to 2,3-dihydro-1*H*-benzo[*b*]siloles.

Scheme 48 Rhodium-catalyzed enantioselective $sp^{3}C-H$ bond silylation with chiral diphosphines.

into the Si–H bond followed by the oxidative addition of the proximal alkyl sp³C–H bond to the Rh species followed by the dehydrogenation and formation of the sp³C–Si bond.⁶⁹ Further studies led the same group to propose the catalytic mechanism presented later in Scheme 49. This regioselective reaction can also be performed without an aromatic ring such as from H–Si(^{*n*}Bu)₃ by silylation of an alkyl sp³C–H bond,⁶⁹ as was also observed using a platinum catalyst (see eqn (4)).⁴⁰

Later, the same Kuninobu–Takai group⁷⁰ showed the strong influence of the phosphine ligand on the efficiency of the [RhCl(cod)]₂ catalyst as well as the required presence of an alkene. For instance (*R*)-DTBM-SEGPHOS and 3,3-dimethyl-1butene appeared to be excellent partners for intramolecular silylation at the β -sp³C–H bond of the alkyl group as shown in Scheme 47.

More importantly, the use of chiral SEGPHOS or GARPHOS diphosphine allowed the enantioselective intramolecular methyl silylation of 2-isopropyl phenylsilane although in modest enantiomeric excess (Scheme 48).⁷⁰

The proposed mechanism of the reaction involves first the initial transformation of the Rh–Cl into the Rh–H bond *via* reaction with silane followed by the oxidative addition of the Si–H bond to the Rh–H moiety. The dehydrogenation with the help of the alkene proceeds by its insertion into the Rh(m)–H bond and alkane elimination. The insertion of the resulting Rh(I) species into the neighbour alkyl β -C–H bond, followed by reductive elimination to form the Si–C bond can then take place (Scheme 49).⁷⁰

More recently Hartwig *et al.*⁷¹ applied this reaction for the very efficient enantioselective intramolecular silylation of the β -C–H bond of an alkyl group at the *ortho* position of arylsilanes

Scheme 49 Proposed reaction mechanism for intramolecular silvlation of the alkyl group using the Rh(I) catalyst.

Scheme 50 Enantioselective intramolecular silylation of $sp^{3}C-H$ bonds using the chiral Ir(I) catalyst.

using the $[Ir(OMe)(cod)]_2$ catalyst with the optically active N^N bidentate ligand L (Scheme 50).

The use of the chiral tetrahydroquinoline **L** led to high enantioselectivity (e.r. = 92:8 to 98:2) and good yield of the 5-membered cyclic dihydrobenzosiloles at 50 °C but in the presence of norbornene as a hydrogen trap. The reaction can be performed at the gram scale. The kinetic isotopic effect KIE of $K_{\rm H}/K_{\rm D}$ = 1.9 for intramolecular silylation with the CH(CH₃)₂/ CH(CD₃)₂ *ortho* alkyl groups suggest that the C–H bond cleavage is the rate determining step. The formed chiral dihydrobenzosiloles can be transformed easily by classical reactions of silanes into polyfunctional derivatives as some are illustrated in Scheme 51.⁷¹

Recently the Genping Huang group⁷² studied the mechanism of Hartwig's reaction⁷¹ on intramolecular silylation of the sp³C–H bond in *ortho*-alkyl silyl arenes with the help of DFT calculations. First they showed that the [Ir(OMe)(cod)]₂ precursor upon reaction with the chiral N^N ligand and silane (*o*-alkyl)ArSiMe₂H led to the Ir(\mathfrak{m}) (N^N)Ir(H)₂[Si] catalytic active species I (Scheme 52). The coordination of the norbornene C==C bond allows its insertion into the Ir–H bond and the resulting alkyl group interacts with the remaining Si–H bond to eliminate the norbornane and to form the Ir–SiMe₂(aryl) intermediate **II**. The next key step involves the alkyl C–H bond interaction with the Ir(\mathfrak{m}) center,

Scheme 51 Transformations of the enantioenriched dihydrobenzosiloles.

Scheme 52 Catalytic cycle based on DFT calculations of intramolecular silylation of the $sp^{3}C-H$ bond.

followed by C–H bond oxidative addition to form the Ir(v) intermediate(m). The reductive elimination with C–Si bond formation leads to the product and the catalytic species **I**. The reductive elimination from **III** cannot take place directly but occurs after the initial Ir-hydride silyl group $Ir-H\cdots$ [Si] interaction. The DFT calculations show that both electronic and steric effects contribute to create the enantioselectivity.

Another recent example of intramolecular silvlation of azylsilanes using Ru(n) catalysts will be described later (Scheme 60).

7.2 From alkylsilanes arising from *in situ* hydrosilylation of C=C bonds

Gevorgyan *et al.*⁷³ contributed to formally transform an alkene into a 1,4-diol *via* hydrosilylation of the alkene C=C double bond first with R_2SiH_2 , followed by regioselective sp^3C-H bond intramolecular dehydrosilylation at the δ -carbon of the resulting alkylsilane, to form a 5-membered silolane which on oxidation selectively leads to 1,4-diol (eqn (5)).

Silylation reactions are promoted by $[Ir(OMe)(cod)]_2$ as the catalyst. The success firstly required the introduction of a picolyl directing group at the silicon atom to allow the oxidative addition of the neighbouring Si–H bond at the picoline coordinated Ir(i) center and then the efficient oxidation. Then the δ sp³C–H bond activation at the iridium center is expected to

Scheme 53 Ir(i)-Catalyzed δ -C-H dehydrogenative silulation reaction and the formation of silolanes.

release hydrogen, trapped by norbornene (NBE), to give intermediate **A** followed by C–Si bond formation to give cyclic silolane **B**. Then the oxidation of the silolane leads to 1,4-diol or diacetate (eqn (6)).

Thus a variety of silolanes have been produced from the silane containing the H–SiCH₂CH₂CH₂CH₂CH₃ arrangement and the picolyl (Pic) directing group. The presence of the ^{*t*}Bu group linked to silicon generated stability in the silane. The activation of primary δ -CH₃ is favoured *versus* that of δ -CH₂Ar and the silylation of the δ -C–H bond of a cyclopropyl group is possible. The reaction tolerates many functional groups such as Ar–X: Cl, Br, and CF₃ groups (Scheme 53).

The oxidation of the silolanes by TBHP/KH and then the treatment with Ac₂O allow the selective formation of 1,4-diacetates (eqn (7)).⁷³

Similarly camphene, 2-methylenebornane and a derivative of lithocholic acid were selectively transformed into their 1,4-diacetate derivatives (Scheme 54).⁷³

Scheme 54 1,4-Oxygenation of alkene containing natural products via hydrosilylation, silylation of sp^3C-H bonds and oxidation.

8. Intermolecular catalyzed $sp^{3}C-H$ bond silylation of X-CH₃ into X-CH₂SiR₃ groups (X = B; Si; O; N; S)

A variety of $sp^{3}C-H$ bond silvlations of groups of type X–CH₃ (X = B; Si; O; N; S) have been performed, either directed by a functional group or without. The resulting products of type X–CH₂–SiR₃ thus allow a variety of functionalizations into X–CH₂–FG derivatives which cannot be achieved directly using the X–CH₃ group. This section will outline such X–CH₃ silvlations and some of the related functionalizations.

8.1 Directed silylation of the B-CH₃ group

Review Article

Directed silvlation of the B–CH₃ group was performed by Suginome as early as in 2011.⁷⁴ He first succeeded in the silvlation of the methyl group linked to the boron in boronic acid CH₃B(OH)₂ with a ruthenium catalyst but by using 2-(1*H*-pyrazol-3yl)aniline (PZA) as a removable *ortho* directing group. Thus the resulting methyl boronic derivative reacts with a variety of trialkylsilanes, promoted by RuH₂(CO)(PPh₃)₃ catalysts which easily affords a classical Ru(0) species *via* dehydrogenation. The reaction takes place in the presence of norbornene as a hydrogen scavenger to give the α -silvlated product (Scheme 55).

Analogous efficient directing groups can be used from 2-(1*H*-pyrazol-3-yl)phenol or anthranilamide for this reaction. The formed primary silylation products were treated with pinacol and TsOH to give the corresponding pinacol esters (Scheme 55).⁷⁴

Under similar conditions the silylation of the PZA derivative of ethylboronic acid led to α - and β -silylation of the ethyl group in similar yield. It is noteworthy that these pinacol esters derived from α -silylmethyl boronic acid (Pin)₂B–CH₂SiMe₂Ph are good reagents for the Suzuki–Miyaura C–C cross-coupling reactions with arylbromides using a Pd(0) catalyst to afford aryl-CH₂SiMe₂Ph derivatives.

8.2 Silylation of the Si-CH₃ group with Ir(1) catalyst

Directed silvlation of the Si–CH₃ group was recently observed in 2017 by Takai⁷⁵ who performed the novel combination of two molecules of PhCH₂SiHMe₂ by intermolecular silvlation of a SiCH₃ group *via* initial sp³C–H bond silvlation of one SiCH₃ group to produce first the intermediate PhCH₂(Me)₂Si–CH₂Si(H)(Me)CH₂Ph and then the formation of hydrogen in the presence of IrCl(CO)(PPh₃)₂ catalyst. The catalyst [Ir(OMe)(cod)]₂ with Me₂Phenanthroline after the formation of PhCH₂(Me)₂Si–

Scheme 55 α -Functionalization of methylboronic acid via introduction of a N^N directing group using a ruthenium catalyst.

 $CH_2Si(H)(Me)CH_2Ph$ further promoted the intramolecular silylation of the *ortho* sp²C-H bond of one phenyl to produce the tetrahydrobenzo[*d*][1,3]disilane (Scheme 56).

It was shown that when the Vaska complex $IrCl(CO)(PPh_3)_2$ was used as the catalyst the silylation of one Si–CH₃ group was observed first and the resulting product in the presence of $[Ir(OMe)(cod)]_2/Me_2Phen$ catalyst gave the disilyne derivative (eqn (8)). This shows the ease of silylation of the methyl group and the importance of the catalyst for successive intermolecular silylations of the sp³C–H bond and intramolecular silylation of the sp²C–H bond.⁷⁵

The proposed mechanism firstly involves the formation of Ir–H species **A** from the Ir–X(Ln) catalyst and silane to give the formation of Ir^{I} –SiMe₂CH₂Ph moiety **B** on elimination of H₂. Then the oxidative addition of the H–C(methyl) bond of HSiMe₂CH₂Ph to Ir^{I} SiMe₂CH₂Ph is expected to occur to form the intermediate **C** which on reductive elimination forms the product **D** and regenerates the catalyst **A** (Scheme 57). Then the insertion of H₂ and the classical *ortho* sp²C–H bond activation by the Ir(1)(Phen) moiety should lead to sp²C–Si bond formation by reductive elimination to give the disilane derivative (Scheme 56).

The same catalyst $[Ir(OMe)(cod)]_2/5,6-Me_2Phen$ could be used by Takai⁷⁵ to perform the intramolecular sp³C–H bond silylation of a Si–Me group with dehydrogenation as described in eqn (9).

The intramolecular sp³C–H bond silylation of one methyl of 1,2-bis(dimethyl silyl)benzene with the same $Ir(1)/5,6-Me_2Phen$

Scheme 57 Proposed mechanism for the dehydrogenative dimerization of benzylmethylsilane.

catalytic system in the presence of 3,3-dimethyl butene could also be performed quantitatively (eqn (10)).⁷⁵

It is important to note that the above silylation reactions are efficient only for a SiCH₃ moiety as when one $-SiHMe_2$ group of 1,2-bis(dimethylsilyl)benzene is replaced by OMe or NMe₂ (eqn (10)) the OCH₃ and NCH₃ group are not silylated.⁷⁵

8.3 Silylation of the O-CH₃, N-CH₃, Si-CH₃ and Ge-CH₃ groups using the pincer Ru(n) catalyst

Directed silvlation of the O–CH₃, N–CH₃, Si(CH₃)₂ and Ge(CH₃)₂ groups has recently been performed using a Ru(π) catalyst. The previous problem of the absence of intramolecular silvlation by a H–SiR₂ *ortho* group of an sp³C–H bond of an *ortho* OMe or NMe₂ group was performed in 2017 by Zheng Huang who introduced a pincer ruthenium(π) catalyst for catalytic silvlations. The fast synthesis of [1,3]-oxasilolanes, azasilolanes, germasilolanes and [1,3]-disila-heterocycles was thus performed (eqn (11)).⁷⁶

$$R^{1}_{I} \xrightarrow{K^{2} \times K^{3}}_{X \leftarrow X} \xrightarrow{[Ru]} R^{1}_{I} \xrightarrow{[Ru]} R^{1}_{I} \xrightarrow{K^{2} \times K^{3}}_{SiMe_{2}, GeMe_{2}} (11)$$

As shown in Scheme 58 a low loading of the pincer Ru(II) complex (PCP)RuH(NBD) (0.1 mol%) allows intramolecular sp³C-H bond silylation and formation of various [1,3]-oxasilolanes. The reaction takes place with the hydrogen acceptor cyclooctene (COE) at 120 °C. Other selected catalysts based on the pincer Ir(III) complex offer low yield for silylation. This reaction could produce 7.6 g of simple [1,3]-oxasilolane in one step which can easily lead to cross-coupling reactions with ArI and Pd(0) catalysts.⁷⁶

Previously the silylation of NCH₃ groups was reported by Sato⁴³ but the C–H bond activation was assisted by pyridine as the directing group (Scheme 6). The intramolecular silylation of

Scheme 58 Pincer-Ru(II)-catalyzed intramolecular silylation of sp ^3C-H bonds α to the O atoms.

Scheme 59 Pincer Ru-catalyzed intramolecular silylation of sp 3 C–H bonds α to the N-, Si-, or Ge-atoms.

methyl sp³C–H bonds of –NRCH₃, –Si(CH₃)₃ and even –Ge(CH₃)₃ groups was performed without assistance of a directing group, with the same pincer-Ru/COE catalyst by Zheng Huang.⁷⁶ However the loading of the catalyst had to be increased for Si(CH₃)₃ (5 mol%) and for Ge(CH₃)₃ (10 mol%) to achieve good yields with COE (1 equiv.) at 120 °C for 24 h (Scheme 59).

The silylation with the pincer-Ru catalyst could also be performed at the methyl primary sp^3C-H bond of the *ortho* alkyl group not attached to a hetero atom element in proximity to the Si-H bond (Scheme 60).⁷⁶ The intramolecular silylation of the *ortho* alkyl group of 2-alkyl arylsilanes was also observed previously using Rh(I) catalysts (see Schemes 45 and 46).⁶⁹

To establish the relative reactivity of these $(X-CH_3)$ C-H bonds, experiments were performed with this pincer Ru(π)

Scheme 60 Ru(μ)-Catalyzed intramolecular silylation of sp³C–H bonds at the *ortho* alkyl β -C-atom of arylsilanes.

Scheme 61 Proposed mechanism for the intramolecular sp 3 C–H silylation of *ortho* O–CH₃ groups.

complex (5 mol%) with COE (1 equiv.) at 120 °C for 24 h and show that intramolecular silylation is faster with the NMe₂ compared to the OMe group (eqn (12)) and faster with the SiCH₃ compared to OCH₃ (eqn (13)), and faster with the NMe₂ compared to the SiMe group.⁷⁶

$$(12)$$

The observed $K_{\rm H}/K_{\rm D}$ KIE of 3.9 suggests that the C–H bond cleavage is the rate determining step. The proposed mechanism based on exchange experiments is presented in Scheme 61.⁷⁶ The formed cyclooctyl group from **B** assists in **C** H–SiMe₂Aryl hydride elimination to give cyclooctane and **D**. Then the intramolecular interaction of the (CH₃O)C–H bond with the Ru–Si bond in **E** leads to C–H bond activation and Si–CH₂O bond formation to release the Ru–H catalyst species **A**.

8.4 Silylation of the S-CH₃ group with an yttrium catalyst

Directed silylation of the S–CH₃ group was observed in 2018 for the first time by Zhaomin Hou *et al.*⁷⁷ The catalytic silylation of a sp³C–H bond of methyl sulfides RSCH₃ with H–SiR'₃ to produce RSCH₂SiR'₃ derivatives has been performed intermolecularly by using metallocene yttrium catalyst (C₅HMe₄)₂Y(CH₂-SiMe₃)(THF) which appeared to be the best catalyst precursor for this *S*-methyl C–H silylation. The catalyst precursor *in situ* gives in the presence of H₂SiR₂ the binuclear complex (C₅HMe₄)₂Y-(µH)₂Y(C₅HMe₄)₂ as revealed for *n*-C₅H₁₁SCH₃ methyl silylation with PhMeSiH₂.⁷⁷ The same catalyst was the most efficient for the silylation of alkyl-SCH₃ sulfides without alkene as the H₂ acceptor (Scheme 62).

Scheme 62 Silylation of alkyl methyl sulfides with diphenylsilane and an yttrium catalyst.

Scheme 63 Silylation of aryl methyl sulfides with diphenylsilane using the metallocene yttrium catalyst.

The same reaction with yttrium catalysts can be applied to aryl methyl sulfides with diarylsilanes to give in neat medium at 90 $^{\circ}$ C a large variety of silylmethyl sulfides (Scheme 63).⁷⁷

The prepared silylmethyl sulfides can be used for further intramolecular silylation of the *ortho* aryl sp²C-H bond to generate 5-membered annulated products in the presence of the Lewis acid $B(C_6F_5)_3$ (eqn (14)).⁷⁷

$$Ph^{S} \xrightarrow{Ph}_{H} Ph \xrightarrow{B(C_{6}F_{5})_{3} (5 \text{ mol}\%)}_{PhCl, 120 °C} \xrightarrow{S}_{Ph'} Ph$$
(14)

The proposed mechanism (Scheme 64) is based on stoichiometric reactions with silane with the catalyst precursor. With an excess of Ph_2SiH_2 at room temperature the formation of bimetallocene **A** containing bridged hydrides is observed. Complex **A** reacts at 60 °C with PhSCH₃ to give the characterized intermediate **B** with a Y-CH₂S(Ph)-Y bridge. The intermediate **B** can further lead to **C** with two identical -CH₂S(Ph)-bridges. Both **B** and **C** react with 5 equiv. of Ph₂SiH₂ at 60 °C to give the PhSCH₂SiHPh₂ silane and to regenerate **A**.

8.5 Directed silvlation of the α -C–H bond of (sulfonamide)XN–CHR₂

Recently Oestreich⁷⁸ has demonstrated the silylation of the sp³C–H bond adjacent to amide nitrogen atoms with R_3 Si-Bpin/alkoxide. The reaction is catalyzed by CuSCN/4,4'-(OMe)₂bpy (10 mol%). The silylation occurred easily with *N*-chloro sulfonamides and with MePh₂Si-Bpin (Scheme 65). The yields are in the range 50–76% with aryl as the R¹ group but drop at 29–35% when R¹ is an alkyl group.

Although the reaction presented here corresponds to the formation of an sp³C–Si bond, it does not involve the formal silylation of an sp³C–H bond. Control experiments show that the initial step is the formation of the imine PhCH = NTs in the presence of LiOMe and the catalytic system CuSCN/(MeO)₂bpy. This imine in the presence of Me₂PhSi-Bpin at room temperature gives the α -silylated product *via* classical Cu-catalyzed 1,2 addition of the silicon nucleophile.

It is possible that the imine formation, usually arising from base mediated β -elimination, is formed *via* the initial formation of the radical PhCH₂N[•]Ts, by action of Cu(I), rearranging into PhCH[•]NHT radicals which can give, by action of Cu(II), the cation intermediate PhCH⁺NHTs leading to the imine upon deprotonation (eqn (15)).

$PhCH_2N(CI)Ts \xrightarrow{Cu(I)}{-CI^-} PhCH_2N^Ts \xrightarrow{1,2-H Shift} PhC'(H)N$		PhC [•] (H)NHTs	(15)
Cu(II) → PhC ⁺ (H)NHTs Base → PhCH=NTs		(15)	

Scheme 65 Copper-catalyzed silylation of $sp^{3}C-H$ bonds adjacent to a *N*-chloro sulfonamide N atom.

9. Silylation of allylic and alkane C–H bonds producing a terminal CH_2 –SiR₃ function

Some silvlations leading to $sp^3CH_2-SiR_3$ bond formation will be presented here, although they do not involve a real sp^3C-H bond catalytic silvlation. Three different examples reported by Szabó,⁷⁹ Peng-Fei Xu⁸⁰ and Zheng Huang⁸¹ will be presented here as they constitute useful approaches to produce reactive $sp^3CH_2-SiR_3$ from allylic compounds and from initial alkane dehydrogenation. The first one involves a classical Pd(n)/Pd(n) activation of alkene into allyl derivatives,⁷⁹ the second one involves a silyl radical formation able to regioselectively add to allylic C=C bonds⁸⁰ and the third presents the dehydrogenation of alkanes followed by isomerization and hydrosilylation of resulting alkenes.⁸¹

In 2011 Szabó described the catalytic silylation with Me_3Si -Si Me_3 of a functional allylic group with sp^3C -Si bond formation.⁷⁹ The reaction was catalyzed by $Pd(OAc)_2$ or a Pd(II)-cyclometalate complex but the reaction needed a strong oxidant such as hypervalent iodine reagent $(ArCO_2)_2IPh$, but also PhOCO-COOPh with benzoquinone or 4-nitro benzoic acid. This oxidant prevents the use of a hydrogen acceptor such as an alkene. The reaction at 80 °C for 48 h offers preferably the stereoselective formation of the *E*-isomer, except for the allyl sulfones and the allylsulfonamides which provide mainly the *Z*-isomer (Scheme 66).

The proposed mechanism (Scheme 67) suggests the initial formation of a Pd(n) intermediate **A** upon oxidation of Pd(n) with (ArCO₂)₂IPh. Coordination of the allyl double bond in **B** is followed by π -allyl ligand formation in **C** upon C–H bond deprotonation with a carboxylate. Then transmetalation with Me₃Si–SiMe₃ leads to the intermediate **D** which is subjected to reductive elimination with sp³C–Si bond formation with the less substituted allylic carbon to generate the silylated functional allyl derivative and Pd(n) catalyst (Scheme 67).

Photocatalysts have been successfully used for the selective functionalization of C–H bonds, but mostly until now of sp² C–H bonds.⁸² However, recently Peng-Fei Xu *et al.*⁸⁰ reported a new method to generate substituted allylsilanes *via* dehydrogenative silylation of alkenes with H–SiR₃. The silylation does

Scheme 66 Synthesis of allylsilanes by catalytic C–H silylation.

Scheme 67 Proposed catalytic cycle for silylation of the functional allyl group.

not involve the functionalization of the C–H bond but regioselectively takes place by addition of a silyl radical at the terminal carbon of the allyl C=C bond of $RC(CH_3)$ =CH₂ to form a terminal CH₂–SiR₃ bond in R(=CH₂)CH₂SiMe₃. The reaction involves the initial generation of a R₃Si[•] radical by hydrogen atom transfer (HAT) catalysis and the reaction is promoted by an organic photocatalyst and a Co(II) catalyst Co(dmgH)₂Cl(Py) (dmg = dimethyl glyoximate) for single electron transfer (SET) (Scheme 68). The dehydrogenative silylation of alkenes was performed with photocatalyst 4CzIPN using blue LEDs with Co(dmgH)₂(Py)Cl for single electron transfer (SET) and quinuclidine as a HAT catalyst in the presence of pyridine as a required base. A large variety of functional alkenes were selectively transformed at room temperature in MeCN, into allylsilanes such as acrylate derivatives (Scheme 68).

This tricatalytic system was applied to *N*-allyl-*N*-arylacrylamides to produce related cyclic silvlated products with a terminal CH₂SiR₃ group: 5-membered α , β -unsaturated γ -lactams *via* 5-*exo*trig cyclization (Scheme 69). This general transformation was also

Scheme 68 Dehydrogenative radical silvlation of alkenes into allylsilanes with multiple catalysis.

Scheme 69 Dehydrogenative radical silulation of *N*-allyl arylamides and 5-*exo*-trig cyclization.

Scheme 70 A proposed mechanism for dehydrogenative silylation of alkenes into allyl silanes.

performed at the gram scale. However, the reaction could not be applied to non-conjugated *N*-benzyl and *N*-cyclohexyl acrylamides.

This transformation involves the formation of radical intermediates as it is inhibited *via* a radical trap TEMPO. The proposed mechanism is shown in Scheme 70.⁸⁰ The reaction requires the presence of a photocatalyst **PC** (4CzlPN) which upon excitation with blue LED generates the excited **PC*** which is oxidized by Co(m) species **A** giving **PC**⁺ cations and Co(n) species **B**. ($E_{1/2}^{\text{red}}$ Co(m)/Co(n) = -0.68 V vs. SCE). Then the **PC**⁺ = 4CzIPN⁺ species ($E_{1/2}^{\text{red}}$ P⁺/P = +152 V vs. SCE) oxidizes the HAT catalyst quinuclidine **Q** ($E_{1/2}^{\text{red}}$ = +1.10 V) to give **Q**^{•+} and initial photocatalyst **PC**. The radical cation **Q**^{•+} is able to trap the hydrogen atom from H–SiR₃ to generate the radical R₃Si[•].

Subsequent addition of the R_3Si^{\bullet} radical to the terminal carbon atom of the alkene generates the carbon center radical which adds the Co(m) species **B** arising from the reduction of the initial Co(m) species **A** by SET from PC*, to give **C**. The latter *via* classical beta elimination generates the new alkene with an allyl silyl group **II**. The resulting Co(m)-H species **D** upon protonation with PyH⁺ releases H₂ and the initial Co(m) catalyst **A**.

This new synergetic catalytic reaction to form CH_2 =CH(R')– CH₂SiR₃, from CH₃-CH(R')=CH₂, which does not involve a direct C-H bond functionalization, but the formation of a silyl radical, has strong potential to produce regioselectively functional allylsilanes and to open new selective silylations.

Linear alkylsilanes are one of the most important compounds having wide applications in the preparation of coatings, silicone rubbers and moulding products. Hydrosilylation of terminal olefins is the most efficient method for the synthesis of linear alkylsilanes, but the direct and selective functionalization of alkanes at primary C-H bonds into a C-silyl group has been seldom reported in spite of their importance. However, Zheng Huang et al. in 2015⁸¹ reported a new method to produce linear alkylsilanes via a dual-catalyst system, and one pot and threestep alkane silvlation. These catalytic systems involve a pincerligated Ir(III)-catalyzed alkane dehydrogenation to generate an internal olefin and Fe catalyzed successive regioselective olefin isomerization and hydrosilylation (Scheme 71).⁸¹ The (PNN)FeBr₂ complex is ineffective for the hydrosilylation of internal olefins, but plays two important roles for the catalytic system; (i) the fast isomerization of internal olefins, produced by Ir catalyzed alkane dehydrogenation, into the terminal olefin and (ii) the catalyzed Markovnikov hydrosilylation of the terminal alkenes to yield terminal alkylsilanes.

10. Catalyzed $sp^{3}C-H$ bond silylation directed by phosphine P(III) atoms

Quite recently Zhuangzhi Shi⁸³ explored the possiblity of silylating the aryl sp²C–H bond of P(aryl)R₂ phosphines, using H–SiEt₃ or HSiMe(OTMS)₂ and a Ru(II) catalyst precursor [RuCl₂(*p*-cymene)]₂. In spite of the difficulty of formation of a strained 4-membered cyclometalate intermediate, directed by a phosphine phosphorous(III) atom, with P–Ru–C(*ortho*) bond formation and *via* deprotonation of the *ortho* aryl sp²C–H bond, the dehydromonosilylation occurred efficiently in the presence of norbornene as the hydrogen acceptor at 100 °C at the *ortho* position of the phosphorous atom (Scheme 72).

More importantly, when an *ortho* methyl group was present on the aryl group of the phosphine, the ruthenium(II) catalyzed dehydrosilylation of the methyl sp³C–H bond with H–SiEt₃ took place easily at 100 °C in THF but with the addition of CyNH₂ as

a base (Scheme 73).⁸³ The observed silvlation shows that the mono silvlation of $sp^{3}C-H$ bonds at *ortho* methyl groups is easier than at the *ortho* $sp^{2}C-H$ bond as no *ortho* $sp^{2}C-H$ arylation was now observed. The *ortho* methyl arylation seems to be favoured by the presence of an electron withdrawing group on the aryl group (Cl, F, Br, CO₂Me). When an *ortho* ethyl group is present instead of a methyl group, the silvlation takes place at the primary C-H bond (Me) rather than at the secondary (CH₂) C-H bond.

The transformation of the *ortho*-CH₂SiEt₃ group, of the triaryl phosphines prepared as shown in Scheme 73, into a CH₂CH(OH)Ph group can be easily performed upon reaction with PhCHO in the presence of the salt $N(^{n}Bu)_{4}^{+}F^{-}$ at 60 °C.⁸³

This mild condition, intermolecular silvlation of the alkyl group of phosphine ligands likely takes place *via* deprotonation by CyNH₂ of the methyl or ethyl sp³CH bond upon interaction with the Ru(π) center to form a 5-membered cyclometalate, or 6-membered cyclometalate from the ethyl group, as deprotonation assisted by a Ru(π) site requires low energy.^{84,85} This simple silvlation has the potential to modify many useful phosphorous ligands already used in metal-catalyzed reactions.⁸⁶

11. Conclusions and outlook

Several methods for the metal-catalyzed activation of $sp^{3}C-H$ bonds synchronized with silylation of this sp^{3} carbon to produce $sp^{3}C-SiR_{3}$ bonds are now efficient in the modification of functional molecules, ligands to build catalysts or molecular materials, and to offer functionalization of silicon containing products. Intermolecular silylations of a variety of $sp^{3}C-H$ bonds can be directed by a N-containing heterocycle in the presence of silane and of various catalysts based on Ru(0), Ru(II), Rh(I), Ir(I) and Ir(III) metal complexes. The transformation is based on heterocycle

directed sp³C–H bond metal activation and Si–H bond metal activation with hydrogen elimination which can be solved with the addition of an alkene as a hydrogen trap. This regioselective formation of CH₂SiR₃ groups allows their easy transformation such as *via* oxidation and carboxylation. Intramolecular sp³C–H bond silylation with R₃Si–SiR₃ can be directed by an amide type function in the presence of Pd(π) catalysts which involves first sp³C–H bond deprotonation and palladacycle formation usually followed by oxidative addition of the silane Si–Si bond and formation of the C–Si bond. This method can be successfully applied to the steroselective sp³C–H bond silylation of aminoacids and peptides.

The intramolecular silvlation of sp³C-H bonds can be performed, after the initial formation of a R'CH₂O-SiR₂(H) group, by catalytic dehydrohydrosilylation of alcohols or hydrosilylation of ketones with H₂SiR₂. The R'CH₂O-SiR₂(H) groups lead to 5- or 6-membered oxasiloxanes in the presence of Ir(1) or Rh(I) with an alkene for hydrogen capture. This silvlation is currently used for the access to 1,3- and 1,4-diols from alcohols with a sp³C-H bond at the γ or δ position. A similar initial silvlation of amine NH bonds into N-SiR₂H groups allows further intramolecular silvation of the neighbouring sp³C-H bond using Ir(I) catalysts with alkenes as the H_2 trap. Both catalytic silvlation steps can be performed in one pot using the same Ir(1) catalyst but with the addition of alkene for the second intramolecular step. The sp³C-H silvlation step can be controlled, upon addition of chiral diphosphine, to reach good enantioselectivities especially in the functionalization of cyclopropyl derivatives.

Silanes containing a C–SiR₂H group at the proximity of a CH₂R group, such as in *ortho* alkyl arylsilanes can lead to an intramolecular catalytic silylation of one sp³C–H bond with the formation of 5-membered silanes using Rh(1) or Ir(1) catalysts mostly in the presence of an alkene. The addition of chiral dinitrogen ligand to the Ir(1) catalyst can lead to excellent enantioselectivities. Alkyl silanes arising from initial catalytic hydrosilylation of terminal alkenes also lead to intramolecular silylation into 5-membered cyclic silanes. This reaction upon oxidation offers new access to 1,4-diols.

Intermolecular and intramolecular sp^3C-H bond silylation of X–CH₃ into the X–CH₂SiR₃ group can be performed for a variety of heteroatoms X (X = B, Si, O, N, Ge, S). B–CH₃ groups are silylated after the addition of a dinitrogen bidentate ligand to boronic acid, with the help of a Ru(0) catalyst precursor. Intermolecular silylation of the SiCH₃ bond using Ir(1)/phenanthroline catalysts can be directed for the production of 5- and 6-membered 1,3-disilanes. In contrast, the pincer-Ru(π)–H catalyst allows the intramolecular silylation of the C–H bonds of XCH₃ groups (OCH₃, NCH₃, Si–CH₃ and Ge–CH₃) to produce 5-membered cycles with the X–CH₂–Si arrangement. The intermolecular silylation of alkylSCH₃ and arylSCH₃ can now be easily achieved using an yttrium metallocene catalyst.

Formal silylation of the allyl group $CH_3-C(R)=CH_2$ into the reactive group $CH_2=C(R)-CH_2SiR_3$ can be performed in several ways although they do not involve direct sp³C-H bond silylation. (1) $Pd(\pi)$ catalysts with an oxidant are used for the silylation with

Me₃Si–SiMe₃ of the allyl group, *via* an allyl-Pd(v) intermediate. (2) A photocatalyst associated with a cobalt(m) catalyst has been used to generate a silyl radical from silane, *via* hydrogen atom transfer (HAT), which can add to the allyl C=C bond to further produce CH₂=C(R)–CH₂SiR₃ derivatives. (3) A 3-step alkane silylation into a terminal linear alkyl silane alkyl-CH₂SiR₃ can be performed using an Ir(m) catalyst to dehydrogenate the alkane into alkenes and an Fe(π) catalyst to isomerize the produced internal alkene into linear alkylsilane.

Finally, a new useful orientation for the silylation of an sp³C–H bond has just been performed *via* the silylation directed by a (phosphine)P(III) atom for the regioselective silylation of an *ortho* methyl group of arylphosphine, with a Ru(II) catalyst in the presence of alkene. This new reaction should allow fast modification by sp³C–H bond silylation of a variety of phosphine or diphosphine ligands containing alkyl groups.

These successful examples show that classical noble metal catalysts which are mostly derivatives of Ru, Rh, Ir and Pd metals are required for both the sp³C–H bond activation and the Si–H or Si–Si bond activation, for sp³C–Si bond formation. Recently, many examples of sp³C–H bond activation to make sp³C–C bond cross-couplings have been discovered with first row metal catalysts (Mn, Fe, Co),^{87–90} and thus we can expect that these cheap and less toxic metal catalysts will also inspire chemists to perform sp³C–H bond catalytic silylations with them.

The first evidence for direct catalytic silylation of a methyl group linked to an aryl group of phosphine into a aryl-CH₂SiR₃ group suggests that in the near future useful phosphines or diphosphines, even chiral ones, could be modified by the introduction of a sterically hindered group such as CH_2SiR_3 or could be transformed into new functional products quickly leading to new functional ligands and their metal catalysts as has already been shown for phosphine sp²C–H bond functionalization.^{83,86,91,92}

This easy transformation of sp³C–H bonds into CH₂SiR₃ groups has already allowed direct access to carboxylates, alcohols, diols, esters, or aminoalcohols, sometimes with excellent enantioselectivity. Thus these reactions should allow new functionalizations leading to natural products but will also modify monomers in one pot reactions for further polymerization or polymers themselves,^{93,94} or the physical properties of molecular materials,⁹⁵ including luminescence properties.^{96,97} One can even expect that in the near future catalytic sp³C–H bond silylation will be applied to directly modify metal-complexes and their optical properties,⁹⁸ or to produce more efficient catalysts.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are thankful for the support from the National Natural Science Foundation of China (No: 21702148), the Foundation of

Department of Education of Guangdong Province (No: 2018KTSCX230), and the French CNRS and French Ministry for Research.

References

- 1 P. B. Arockiam, C. Bruneau and P. H. Dixneuf, *Chem. Rev.*, 2012, **112**, 5879–5918.
- 2 B. Li and P. H. Dixneuf, *Chem. Soc. Rev.*, 2013, 42, 5744–5767.
- 3 D. Pla and M. Gomez, ACS Catal., 2016, 6, 3537-3552.
- 4 K. Liao, S. Negretti, D. G. Musaev, J. Bacsa and H. M. L. Davies, *Nature*, 2016, **533**, 230–234.
- 5 D. L. Davies, S. A. Macgregor and C. L. McMullin, *Chem. Rev.*, 2017, **117**, 8649–8709.
- 6 R. Shang, L. Ilies and E. Nakamura, *Chem. Rev.*, 2017, **117**, 9086–9139.
- 7 N. K. Mishra, S. Sharma, J. Park, S. Han and I. S. Kim, *ACS Catal.*, 2017, 7, 2821–2847.
- 8 X.-S. Xue, P. Ji, B. Zhou and J.-P. Cheng, *Chem. Rev.*, 2017, **117**, 8622–8648.
- 9 Z. Dong, Z. Ren, S. J. Thompson, Y. Xu and G. Dong, *Chem. Rev.*, 2017, **117**, 9333–9403.
- 10 Y. Yang, J. Lan and J. You, Chem. Rev., 2017, 117, 8787-8863.
- 11 T. Gensch, M. N. Hopkinson, F. Glorius and J. Wencel-Delord, *Chem. Soc. Rev.*, 2016, **45**, 2900–2936.
- 12 L. Ackermann, Acc. Chem. Res., 2020, 53, 84-104.
- 13 P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz and L. Ackermann, *Chem. Rev.*, 2019, **119**, 2192–2452.
- 14 F. Kakiuchi and N. Chatani, *Adv. Synth. Catal.*, 2003, 345, 1077–1101.
- 15 J. Choi and A. S. Goldman, *Iridium Catalysis*, ed. P. G. Andersson, Springer, Heidelberg, 2011.
- 16 B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374-2390.
- 17 J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864-873.
- 18 C. Cheng and J. F. Hartwig, Chem. Rev., 2015, 115, 8946-8975.
- 19 R. Sharma, R. Kumar, I. Kumar, B. Singh and U. Sharma, *Synthesis*, 2015, 2347–2366.
- 20 Y. Yang and C. Wang, Sci. China: Chem., 2015, 58, 1266–1279.
- 21 Z. Xu, W.-S. Huang, J. Zhang and L. W. Xu, *Synthesis*, 2015, 3645–3668.
- 22 X. Shang and Z.-Q. Liu, Org. Biomol. Chem., 2016, 14, 7829–7831.
- 23 S. Bähr and M. Oestreich, *Angew. Chem., Int. Ed.*, 2017, 56, 52–59.
- 24 S. C. Richter and M. Oestreich, Trends Chem., 2020, 2, 13-27.
- 25 S. Bähr, W. Xue and M. Oestreich, ACS Catal., 2019, 9, 16–24.
- 26 I. Fleming, R. Henning and H. Plaut, J. Chem. Soc., Chem. Commun., 1984, 29-31.
- 27 K. Tamao, N. Ishida, T. Tanaka and M. Kumada, *Organometallics*, 1983, 2, 1694–1696.
- 28 T. A. Carpenter, G. E. Evans, F. J. Leeper, J. Staunton and M. R. Wilkinson, J. Chem. Soc., Perkin Trans. 1, 1984, 1043–1051.

- 29 E. Baciocchi, T. Del Giacco, C. Rol and G. V. Sebastiani, *Tetrahedron Lett.*, 1989, **30**, 3573–3576.
- 30 E. Baciocchi, M. Crescenzi, E. Fasella and M. Mattioli, J. Org. Chem., 1992, 57, 4684–4689.
- 31 R. J. Lundgren and M. Stradiotto, *Aldrichimica Acta*, 2012, 45, 59–65.
- 32 P. Y. S. Lam, S. Deudon, K. M. Averill, R. Li, M. Y. He, P. DeShong and C. G. Clark, *J. Am. Chem. Soc.*, 2000, **122**, 7600–7601.
- 33 J. M. Murphy, X. Liao and J. F. Hartwig, J. Am. Chem. Soc., 2007, 129, 15434–15435.
- 34 W. P. Weber, *Silicon Reagents for Organic Synthesis*, Springer, Heidelberg, 1983.
- 35 T. Furuya and T. Ritter, Org. Lett., 2009, 11, 2860-2863.
- 36 P. Tang and T. Ritter, Tetrahedron, 2011, 67, 4449-4454.
- 37 M. Ishikawa, S. Okazaki, A. Naka and H. Sakamoto, *Organo*metallics, 1992, **11**, 4135–4139.
- 38 P. I. Djurovich, A. R. Dolich and D. H. Berry, J. Chem. Soc., Chem. Commun., 1994, 1997–1998.
- 39 A. D. Sadow and T. D. Tilley, *Angew. Chem., Int. Ed.*, 2003, 42, 803–805.
- 40 N. Tsukada and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127, 5022–5023.
- 41 F. Kakiuchi, K. Tsuchiya, M. Matsumoto, E. Mizushima and N. Chatani, *J. Am. Chem. Soc.*, 2004, **126**, 12792–12793.
- 42 T. Mita, K. Michigami and Y. Sato, Org. Lett., 2012, 14, 3462-3465.
- 43 T. Mita, K. Michigami and Y. Sato, *Chem. Asian J.*, 2013, **8**, 2970–2973.
- 44 W. Li, X. Huang and J. You, Org. Lett., 2016, 18, 666-668.
- 45 Y. Fukumoto, M. Hirano and N. Chatani, *ACS Catal.*, 2017, 7, 3152–3156.
- 46 Y. Fukumoto, M. Hirano, N. Matsubara and N. Chatani, J. Org. Chem., 2017, 82, 13649–13655.
- 47 K. Kon, H. Suzuki, K. Takada, Y. Kohari, T. Namikoshi, S. Watanabe and M. Murata, *ChemCatChem*, 2016, 8, 2202–2205.
- 48 M. Hirano, Y. Fukumoto, N. Matsubara and N. Chatani, *Chem. Lett.*, 2018, **47**, 385–388.
- 49 S. Liu, Q. Lin, C. Liao, J. Chen, K. Zhang, Q. Liu and B. Li, *Org. Biomol. Chem.*, 2019, **17**, 4115–4120.
- 50 S. Liu, S. Zhang, Q. Lin, Y. Huang and B. Li, *Org. Lett.*, 2019, 21, 1134–1138.
- 51 Q. Lin, Z. Lin, M. Pan, Q. Zheng, H. Li, X. Chen, C. Darcel, P. H. Dixneuf and B. Li, *Org. Chem. Front.*, 2021, 8, 514–521.
- 52 K. S. Kanyiva, Y. Kuninobu and M. Kanai, *Org. Lett.*, 2014, **16**, 1968–1971.
- 53 C. Chen, M. Guan, J. Zhang, Z. Wen and Y. Zhao, Org. Lett., 2015, 17, 3646–3649.
- 54 J.-L. Pan, Q.-Z. Li, T.-Y. Zhang, S.-H. Hou, J.-C. Kang and S.-Y. Zhang, *Chem. Commun.*, 2016, **52**, 13151–13154.
- 55 Y.-J. Liu, Y.-H. Liu, Z.-Z. Zhang, S.-Y. Yan, K. Chen and B.-F. Shi, *Angew. Chem., Int. Ed.*, 2016, 55, 13859–13862.
- 56 A. Deb, S. Singh, K. Seth, S. Pimparkar, B. Bhaskararao, S. Guin, R. B. Sunoj and D. Maiti, ACS Catal., 2017, 7, 8171–8175.
- 57 B. B. Zhan, J. Fan, L. Jin and B. F. Shi, ACS Catal., 2019, 9, 3298–3303.

- 58 P. Liu, J. Tang and X. Zeng, Org. Lett., 2016, 18, 5536-5539.
- 59 E. M. Simmons and J. F. Hartwig, Nature, 2012, 483, 70-73.
- 60 T. G. Frihed, M. Heuckendorff, C. M. Pedersen and M. Bols, Angew. Chem., Int. Ed., 2012, **51**, 12285–12288.
- 61 A. Parija and R. B. Sunoj, Org. Lett., 2013, 15, 4066-4069.
- 62 B. Li, M. Driess and J. F. Hartwig, J. Am. Chem. Soc., 2014, 136, 6586–6589.
- 63 Y. Hua, S. Jung, J. Roh and J. Jeon, *J. Org. Chem.*, 2015, **80**, 4661–4671.
- 64 T. Lee and J. F. Hartwig, Angew. Chem., Int. Ed., 2016, 55, 8723-8727.
- 65 C. Karmel, B. Li and J. F. Hartwig, *J. Am. Chem. Soc.*, 2018, **140**, 1460–1470.
- 66 A. Bunescu, T. W. Butcher and J. F. Hartwig, J. Am. Chem. Soc., 2018, 140, 1502–1507.
- 67 Q. Li, M. Driess and J. F. Hartwig, Angew. Chem., Int. Ed., 2014, 53, 8471-8474.
- 68 B. Su, T. Lee and J. F. Hartwig, J. Am. Chem. Soc., 2018, 140, 18032–18038.
- 69 Y. Kuninobu, T. Nakahara, H. Takeshima and K. Takai, *Org. Lett.*, 2013, **15**, 426–428.
- 70 M. Murai, H. Takeshima, H. Morita, Y. Kuninobu and K. Takai, J. Org. Chem., 2015, 80, 5407–5414.
- 71 B. Su and J. F. Hartwig, J. Am. Chem. Soc., 2017, 139, 12137-12140.
- 72 M. Zhang, J. Liang and G. Huang, J. Org. Chem., 2019, 84, 2372–2376.
- 73 N. Ghavtadze, F. S. Melkonyan, A. V. Gulevich, C. Huang and V. Gevorgyan, *Nat. Chem.*, 2014, 6, 122–125.
- 74 H. Ihara, A. Ueda and M. Suginome, *Chem. Lett.*, 2011, **40**, 916–918.
- 75 M. Murai, Y. Takeuchi and K. Takai, *Chem. Lett.*, 2017, **46**, 1044–1047.
- 76 H. Fang, W. Hou, G. Liu and Z. Huang, J. Am. Chem. Soc., 2017, 139, 11601–11609.
- 77 Y. Luo, H. L. Teng, C. Xue, M. Nishiura and Z. Hou, ACS Catal., 2018, 8, 8027–8032.
- 78 J.-J. Feng and M. Oestreich, Org. Lett., 2018, 20, 4273-4276.
- 79 J. M. Larsson, T. S. N. Zhao and K. J. Szabó, *Org. Lett.*, 2011, 13, 1888–1891.

- 80 W. L. Yu, Y. C. Luo, L. Yan, D. Liu, Z. Y. Wang and P. F. Xu, Angew. Chem., Int. Ed., 2019, 58, 10941–10945.
- 81 X. Jia and Z. Huang, Nat. Chem., 2016, 8, 157-161.
- 82 C. S. Wang, P. H. Dixneuf and J. F. Soulé, *Chem. Rev.*, 2018, 118, 7532–7585.
- 83 J. Wen, B. Dong, J. Zhu, Y. Zhao and Z. Shi, Angew. Chem., Int. Ed., 2020, 59, 10909–10912.
- 84 E. F. Flegeau, C. Bruneau, P. H. Dixneuf and A. Jutand, J. Am. Chem. Soc., 2011, 133, 10161–10170.
- 85 I. Fabre, N. V. Wolff, G. Le Duc, E. F. Flegeau, C. Bruneau,
 P. H. Dixneuf and A. Jutand, *Chem. Eur. J.*, 2013, 19, 7595–7604.
- 86 Z. Zhang, P. H. Dixneuf and J.-F. Soulé, *Chem. Commun.*, 2018, 54, 7265–7280.
- 87 N. Barsu, S. K. Bolli and B. Sundararaju, *Chem. Sci.*, 2017, 8, 2431–2435.
- M. Sen, B. Emayavaramban, N. Barsu, J. R. Premkumar and
 B. Sundararaju, ACS Catal., 2016, 6, 2792–2796.
- 89 A. Lerchen, T. Knecht, M. Koy, C. G. Daniliuc and F. Glorius, *Chem. – Eur. J.*, 2017, 23, 12149–12152.
- 90 C. Zhu, R. Kuniyil, B. B. Jei and L. Ackermann, ACS Catal., 2020, 10, 4444–4450.
- 91 Z. Zhang, T. Roisnel, P. H. Dixneuf and J.-F. Soulé, Angew. Chem., Int. Ed., 2019, 58, 14110–14114.
- 92 Z. Zhang, M. Cordier, P. H. Dixneuf and J.-F. Soulé, Org. Lett., 2020, 22, 5936–5940.
- 93 S. Zhang, Y. Tezuka, Z. Zhang, N. Li, W. Zhang and X. Zhu, *Polym. Chem.*, 2018, 9, 677–686.
- 94 S. Wang, Z. Wang, J. Li, L. Li and W. Hu, *Mater. Chem.* Front., 2020, 4, 692-714.
- 95 Y. Kuninobu and S. Sueki, Synthesis, 2015, 3823-3845.
- 96 T. T. Dang, M. Bonneau, J. A. G. Williams, H. Le Bozec, H. Doucet and V. Guerchais, *Eur. J. Inorg. Chem.*, 2015, 2956–2964.
- 97 R. Boyaala, M. Peng, W.-S. Tai, R. Touzani, T. Roisnel, V. Dorcet, Y. Chi, V. Guerchais, H. Doucet and J.-F. Soulé, *Inorg. Chem.*, 2020, **59**, 13898–13911.
- 98 K. Beydoun, M. Zaarour, J. A. G. Williams, T. Roisnel, V. Dorcet, A. Planchat, A. Boucekkine, D. Jacquemin, H. Doucet and V. Guerchais, *Inorg. Chem.*, 2013, 52, 12416–12428.