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ABSTRACT: The photoredox/Ni dual catalysis is an appealing
strategy to enable unconventional C−heteroatom bond formation.
While significant advances have been achieved using this system,
intermolecular C(sp3)−N bond formation has been relatively
underdeveloped due to the difficulty in C(sp3)−N reductive
elimination. Herein, we present a new mechanistic approach that
utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture
carbon-centered radicals by merging proton-coupled electron
transfer (PCET) with nickel catalysis, thus forming synthetically
versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species
was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)−N bond
formation.

■ INTRODUCTION
The photoredox/Ni dual catalysis has witnessed significant
achievements in recent years, leading to noteworthy accom-
plishments to enable various unconventional transformations,
particularly in facilitating the formation of C−heteroatom
bonds.1−6 As pioneered independently by MacMillan, Mo-
lander, Doyle, and their co-workers, these systems are
distinguished by their ability to harness the reactivity of nickel
catalysts, which play a dual role to initiate and also propagate
radical reactions, ultimately generating nickel(III) intermedi-
ates.2,7−20 These transient species exhibit a remarkable
capability to undergo C−heteroatom bond formation via
reductive elimination under mild reaction conditions. Aliphatic
amides, including amino carbonyl compounds, are prevalent
structural motifs in various bioactive molecules, pharmaceut-
icals, and natural products.21−24 Despite the utmost relevance
of alkyl amides, visible-light-induced intermolecular C(sp3)−N
bond formation is less commonly practiced25−28 by using
transition-metal catalysis. This is largely due to the facile β-
hydride elimination of metal alkyl intermediates, thereby
leading to the generation of a highly reactive metal-hydride
species that can engage in various off-cycle pathways.8,29

Since the dual photoredox/Ni-catalysis has been widely
explored, there are two main strategies for generating key alkyl-
Ni(III)-N complexes to facilitate the formation of the C(sp3)−
N bond. The first approach involves an oxidative addition of
Ni(I)-alkyl species to amine electrophiles to form the key alkyl-
Ni(III)-N complex. This process exploits hydrogen atom
transfer (HAT) to generate alkyl radicals from simple alkanes
(Scheme 1a).30 The second strategy utilizes alkyl radicals

generated via single electron transfer (SET) from alkyltri-
fluoroborates.31 These radicals subsequently undergo radical
coupling with the Ni(II)-amido complex, thus resulting in the
formation of a key alkyl-Ni(III)-N intermediate. To date,
despite the notable advancements achieved in the field of dual
photoredox/Ni-catalyzed C(sp3)−amidation, a strategy of
radical addition from a Ni(II)-nitrenoid has not been reported,
to our best knowledge. While previous research has yielded
elegant contributions to the C−N bond formation via nickel-
nitrene intermediates using bulky ligand systems,8,32−36 we
wondered whether we could utilize 1,4,2-dioxazol-5-ones as
precursors of Ni(II)-nitrenoid to capture photoredox-gener-
ated alkyl radicals, thus enabling intermolecular amidation with
a simple ligand system (Scheme 1b).

Dioxazolones were previously developed as a powerful
amino source in the C−H amidation via metal-nitrenoid
intermediacy37−41 or under photochemical conditions.30,42−46

Also, our group recently validated the intermediacy of Rh(III)-
acylnitrene within a bidentate ligand system using dioxazolone
under photochemical conditions.47 Drawing inspiration from
recent works using β-scission of alkoxy radicals to activate C−
C bonds and reconstruct organic motifs,25,48−69 we conceived
an idea of applying our proposed Ni(II)-nitrenoid system to
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capture carbon-centered radicals driven by photoredox
catalysis. Specifically, we hypothesized that the carbon-
centered radical, once captured by the Ni(II)-nitrenoid,
would lead to the formation of an electrophilic alkyl-Ni(III)-
nitrenoid. This would make an opportunity to facilitate
reductive elimination to form C(sp3)−N bonds, thereby
significantly expanding the reactivity compared to the tradi-
tional radical-coupling process.

Continuing our efforts to utilize the N-centered reactive
intermediates to develop novel nitrogen atom transfer
reactions,70−72 we envisioned utilizing photoredox proton-
coupled electron transfer (PCET) to generate carbon-centered
radicals within the inner-sphere nitrenoid transfer scaffold
using nickel catalysts to outcompete the β-hydride elimination.
Reported herein is the first example of using dioxazolones as a
Ni(II)-nitrenoid precursor to synthesize aliphatic amides via
dual photoredox PCET/Ni-catalysis (Scheme 1c). This
strategy enables the C(sp3)−amidation that is applicable to
both cyclic or acyclic alcohols, providing an access to
synthetically valuable aliphatic amides.21−24 Integrated exper-
imental and computational studies revealed that our
hypothesized (κ2-N,O)Ni(II)-nitrenoid effectively traps car-
bon-centered radicals, which in turn undergo inner-sphere
nitrenoid transfer to form regiospecific C−N bonds.

■ RESULTS AND DISCUSSION
Reaction Development. Recognizing the potential

amidation reactivity with cycloalkanols,25,48,61,64 we first
examined the proposed amidation by using 1,1-bis(4-
methoxyphenyl)-3-phenylpropan-1-ol (1a, 1.5 equiv) as a
model substrate (Table 1). Pleasingly, after extensive screen-
ings of various reaction parameters, we successfully obtained
the desired amidated β-scission product, N-phenethylbenza-
mide (3a), in 89% yield under newly optimized conditions,
with the extrusion of a ketone byproduct (entry 1). Contrary

to the standard conditions, the combination of NiCl2·glyme
with PC2 instead of PC1 afforded a lower yield (entry 2). The
use of other types of N,N-bidentate ligands (L2 or L3) was less
effective (entries 3 and 4). When the reaction was carried out
at a lower concentration, a decreased product yield was
obtained (entry 5). Control experiments indicated that there
was no conversion in the absence of a photocatalyst, nickel
catalyst, 2,4,6-collidine, or visible-light irradiation (entries 6, 7,
9, and 10, respectively). In contrast, a moderate yield (44%) of
the desired product was observed without the ligand L1 (entry
8).
Reaction Scope. With the optimized dual photoredox

PCET/Ni-catalysis conditions in hand, we subsequently
investigated the generality of the current redox-neutral
amidative β-scission of alcohols by exploring first a range of
linear substrates (Scheme 2). Reaction of tertiary alcohols
bearing β-phenyl moiety (1a−1g) provided the corresponding
amides (3a−3g) in moderate to good yields. It should be
noted that it represents the first catalytic C−C bond cleavage
accompanying with amidation of tertiary linear alcohols.
Substrates having only alkyl moieties (1h−1i) were also viable
to furnish the aliphatic amides (3h−3i). A tertiary linear
alcohol bearing a dibenzylamino group (1j) was competent
toward the current amidation reaction conditions. In addition
to tertiary alcohols, secondary counterparts (1k−1n) also
proved to be reactive for this amidative β-scission, with the
emission of 4-anisaldehyde. With the proven reactivity, the
practicality of this C(sp3)−amidation was also tested by a
gram-scale reaction of linear alcohol 1a, resulting in the
formation of the desired product 3a in 62% yield using only 2
mol % PC1, 5 mol % NiCl2·glyme, and 5 mol % L1 under blue
LED irradiation (1.5 h) with recovery of bis(4-
methoxyphenyl)methanone (56%), which could be directly
reused to prepare the starting material 1a.

Scheme 1. Regiospecific C(sp3)−N Bond Formations Using
Photoredox Catalysis via Ni-Nitrenoid

Table 1. Optimization of Reaction Parametersa

aReaction conditions: 0.1 mmol scale in a 4 mL glass vial and yields
were based on 1H NMR analysis of the reaction mixture using an
internal standard (dibromomethane). PC1, di-tBu-Mes-Acr+ BF4

−;
PC2, Mes-Acr+ ClO4

−; glyme, ethylene glycol dimethyl ether;
collidine, 2,4,6-collidine; DCE, 1,2-dichloroethane. bIsolated yield.
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In addition to the C(sp3)−amidation of linear alcohols, we
were curious about the feasibility of using easily accessible
cycloalkanols as carbon-centered radical sources in our
designed Ni(II)-nitrenoid system to furnish newly installed
amides equipped with a remote ketone moiety via the
presupposed amidative ring-opening (Scheme 3). Tertiary
cycloalkanols with various ring sizes were all viable in this C−C
bond cleavage-initiated remote amidation (5a−5e). Reaction
efficiency was not significantly influenced by the ring size as
evidenced by the facile amidation of 5-, 6-, 8-, 12-, and 15-
membered substrates under otherwise identical conditions.
However, the reaction of substituted cyclohexanol derivatives
was rather sluggish (5f and 5g). Substrates containing
heteroatoms such as oxygen or nitrogen inside the ring were
facile for these ring-opening amidation reactions (5h−5k).
Notably, with unsymmetrical substrates having a heteroatom in
the ring (4j and 4k), the bond scission was observed to take
place exclusively at the α-position to the oxygen or nitrogen
atom (5j and 5k). This regioselectivity is attributed to the
difference in the relative stability of the postulated radical
intermediate,73 generated upon the β-scission of the C−C
bond. The structure of the obtained product 5j was confirmed
by X-ray crystallographic analysis. In the case of 4k, 60% of
benzamide was formed as a major side product, which lowered
the formation of the desired product 5k. We subsequently
examined the flexibility of the aryl moiety in cyclohexanol
substrates to find that biphenyl, naphthyl, phenanthrenyl,

thienyl, and 4-phenoxyphenyl groups were all compatible to
furnish the desired amide products in moderate to good yields
(5l−5p).

In addition, the feasibility of other amidating sources was
also briefly tested (Scheme 4). It should be mentioned that
alcohol substrates and dioxazolones are all easily accessible
from the corresponding ketones (aldehydes) and carboxylic
acids, respectively. Dioxazolone derivatives bearing not only
aryl substituents but also alkyl variants such as methyl or
cyclohexyl all participated in the current amidative ring-
opening reaction with cyclopentanol substrate 4b to afford the
corresponding products (5q−5s). In addition, we briefly
explored the synthetic utility of newly developed C(sp3)−
amidation. The current procedure was proved to be applicable
for dioxazolone derived from oxaprozin (5t), an FDA-
approved nonsteroidal anti-inflammatory drug. Also, dioxazo-
lones prepared from lithocholic acid and isonipecotic acid were
viable to furnish the remote amino-ketones bearing a
biorelevant motif. Moreover, carbonyl or sulfonyl azides74

served as effective amidating precursors for this ring-opening
process (5w−5y), which suggests that not only dioxazolone
but also other acyl nitrene precursors can afford the postulated
Ni(II)-nitrenoid intermediates.
Mechanistic Investigation on Intermolecular C(sp3)−

Amidation. To elucidate the mechanism of the current
amidation reaction, we tried to address three fundamental
questions: (a) do Ni(0) or Ni(I) species act as an active

Scheme 2. Synthesis of Aliphatic Amides Using Linear Secondary or Tertiary Alcoholsa

aConditions A: 1 (0.15 mmol), 2a (0.1 mmol), PC1 (5 mol %), NiCl2·glyme (10 mol %), L1 (10 mol %), and 2,4,6-collidine (1.2 equiv) in 1,2-
dichloroethane (0.4 mL) at room temperature for 3 h under 456 nm blue light irradiation. bConditions B: PC2 (5 mol %) instead of PC1. cGram-
scale reaction with PC1 (2 mol %), NiCl2·glyme (5 mol %), and L1 (5 mol %) under 456 nm for 1.5 h under 456 nm blue light irradiation.
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catalyst; (b) does the photoredox PCET process generate a
carbon-centered radical; and (c) can the hypothesized Ni(II)-
acylnitrenoid generated in situ from dioxazolone undergo the

C(sp3)−N bond formation? In light of these queries, we
initially proposed three plausible catalytic pathways based on
the precedent literature (Figure 1a-1).7,12,19,61,75−77 To first see
whether Ni(0) species is involved within the catalytic cycle, we
performed control experiments using different Ni sources
(Figure 1a-2).77 When Ni(cod)2 was used along with L1,
notable conversion of 1a toward the desired amidation product
3a was observed. However, in the absence of the ancillary
ligand L1, the system became unreactive, suggesting that
ligated (L1)Ni(0) would likely be involved in the catalytic
manifold of either path 1 or 2.78

Our proposed photoredox PCET cycle is depicted in Figure
1b-1. Upon visible-light irradiation, an aryl moiety in substrates
undergoes oxidation by the excited state of PC to form a
transient arene radical cation (1a•+). An intramolecular PCET
process may follow to provide an alkoxy radical intermediate
(1a•), which is subsequently transformed into a reactive
carbon-centered radical 1a′ via the critical β-scission. The
Stern−Volmer analysis revealed that the excited state of PC
was efficiently quenched by alcohol 4a in CH2Cl2, irrelevant to
the existence of collidine. To validate the proposed PCET, a
series of mechanistic experiments were conducted (Figure 1b-
2; see the Supporting Information for details). A hydroxy-
protected ether (1o) did not undergo amidative β-scission
under standard conditions A. When a reaction of 4a was
performed in the presence of TEMPO (2,2,6,6-tetramethyl-1-

Scheme 3. Synthesis of Remote Amino-Ketones Using Tertiary Cycloalkanolsa

aConditions C: 4 (0.2 mmol), 2a (0.1 mmol), PC1 (5 mol %), NiCl2·glyme (10 mol %), L1 (10 mol %), and 2,4,6-collidine (1.2 equiv) in 1,2-
dichloroethane (1.0 mL) at room temperature for 3 h under 456 nm blue light irradiation. bConditions D: L4 (10 mol %) instead of L1 (10 mol
%).

Scheme 4. Investigation of Amidation Sources
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piperidinyloxy), TEMPO-trapped ketone 5z was obtained in
44%, while amidated β-scission product (5a) was not observed.

To shed light on the key questions regarding the dual
photoredox/Ni-catalysis, density functional theory (DFT)
calculations were carried out using model substrate 1a and
dioxazolone 2a (Figure 1c; see the Supporting Information for
details).9,77,79 In our DFT study, the alkoxy radical
intermediate (1a•) was shown to smoothly undergo the β-
scission with a 3.31 kcal/mol energy barrier, readily generating
alkyl radical 1a′ with the release of the ketone byproduct.
Starting from (L1)Ni(0) A, two plausible pathways 1 and 2
were considered. For the former path, a radical addition of 1a′
to (L1)Ni(0) A gives an alkyl-Ni(I) intermediate B, being
thermodynamically favored. In the pathway 2, however,
nitrenoid formation from A gives (κ2-N,O)-bound Ni(II)
species G′ upon extrusion of CO2 via the (κ1-N)-binding mode
(G) with an overall ΔG value of −18.21 kcal/mol.34,80 It is

noteworthy that the current amidative β-scission system
appears to be distinctive from our previous NiH-catalyzed
amidation system, where (κ1-N)Ni(III)-nitrenoid was pro-
posed.39,40,81 Interestingly, when the relative energy was
compared between alkyl-Ni(I) intermediate B and (κ2-
N,O)Ni(II)-nitrene G′, the notable thermodynamic stability
of the latter species may support the initial nitrenoid formation
via path 2. Additionally, since this decarboxylative process of
dioxazolone by A is believed to be kinetically feasible, the (κ2-
N,O)Ni(II)-nitrenoid G′ would be considered as the catalyti-
cally competent species involved in the dioxazolone activation
step. Subsequently, following path 2, the addition of 1a′ to the
Ni-nitrenoid G′ was calculated to have a reasonable activation
barrier (G′-TS, ΔG‡ = 9.15 kcal/mol), thereby leading to alkyl-
Ni(III)-nitrenoid H. It should be noted that although an
interconversion between nitrenoid intermediate D (path 1)
and H (path 2) would be conceived, H was calculated to be

Figure 1. Mechanistic studies of dual photoredox PCET/Ni-catalyzed amidative β-scission of alcohols using dioxazolone as a Ni(II)-nitrenoid
precursor. DFT calculation with Gaussian 09 SMD(dichloroethane)-M06/def2tzvpp/def2tzvpp(Ni)//PBE/def2svp/def2tzvp(Ni).
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thermodynamically more viable than D by 6.13 kcal/mol,
presumably due to an additional carbonyl coordination (see
the Supporting Information for details). While an outer-sphere
radical addition was revealed to be energetically more
demanding (see the Supporting Information for details), this
inner-sphere C−N bond formation through H-TS is assumed
to be plausible.

■ CONCLUSIONS
In summary, we have successfully developed a convenient
method for the amidative β-scission of both linear and cyclic
alcohols by a cooperative photoredox PCET and nitrenoid
transfer, thus readily furnishing N-alkyl amide products over a
broad range of substrates and amidating sources. The reaction
was elucidated to initiate by the decarbonylative generation of
alkyl radicals via photoredox catalysis, which are subsequently
captured by the Ni(II)-nitrenoid and ultimately undergo an
inner-sphere nitrenoid transfer. It is anticipated that the
current dual photoredox PCET/Ni-catalysis protocol using
dioxazolone as the nitrenoid precursor may serve as a powerful
tool for the design of new reactions having potential
applicability in synthetic and medicinal chemistry.
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