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A B S T R A C T   

Significant progress has been made in recent years in the development of enantioselective propargylic substitution 
reactions using transition metal complexes as catalysts. In particular, several enantioselective propargylic sub-
stitution reactions have been developed with the formation of transition metal–allenylidene complexes as key 
reactive intermediates. This review focuses on the recent advances in the development of enantioselective pro-
pargylic substitution reactions via transition metal–allenylidene complexes as key intermediates.   

1. Introduction 

Optically active propargylic compounds, where a chiral carbon center 
is introduced at the propargylic position, are known to furnish versatile 
pharmacological activity, where the adjacent reactive alkyne moieties 
provide post-synthetic transformations [1]. It must be noted that similar 
optically active allylic compounds with a chiral carbon center introduced 
at the allylic position have been well prepared by transition metal-cata-
lyzed enantioselective allylic substitution reactions of the allylic substrates 
containing a leaving group (LG) at the allylic position with nucleophiles 
(Tsuji–Trost reaction), where transition metal–π-allyl complexes work as 
key reactive intermediates [2,3]. On the other hand, development of cat-
alytic propargylic substitution reactions of the propargylic substrates 
containing a leaving group at the propargylic position with appropriate 
nucleophiles faced difficulty to control regioselectivity, because competi-
tive tautomerization between propargylic and allenylic species can lead to 
the formation of allene compounds as undesired by-products (Fig. 1a) [4]. 
Propargylic substitution reaction of propargylic alcohols or esters with a 
nucleophile was first reported in 1977 by Nicholas and a co-worker, who 
obtained a desired propargylic substituted product by stepwise reactions 
involving stoichiometric formation of an alkyne-bridged dicobalt complex 
(A) by the reaction of a propargylic alcohol with Co2(CO)8, where the 
nucleophilic substitution reaction occurs to afford the propargylic sub-
stituted complex (B), followed by the oxidative decomplexation of the 
product on treatment with Fe(NO3)3 (Fig. 1b) [5]. 

Catalytic propargylic substitution reaction was later achieved in 1994 in-
dependently by three groups of Murahashi, Caporusso, and Godfrey, all using 
Cu compounds as catalysts to furnish propargylic amination or etherification 
on treatment of propargylic esters, phosphates, sulphates (Ms = MeSO2), or 
halides with amines or phenols as N- or O-centered nucleophiles (Fig. 1c)  

[6–8]. Since a variety of catalytic propargylic substitution reactions mediated 
by not only transition metal catalysts, but also main group Lewis acid catalysts 
and organocatalysts have been developed [9–13]. On the other hand, devel-
opment of catalytic enantioselective propargylic substitution reactions was left 
rather unexplored [14,15], whereas the first successful example of catalytic 
enantioselective propargylic substitution reaction was achieved in 2005 by 
Nishibayashi and co-workers [16], and several enantioselective propargylic 
substitution reactions have been developed so far [17–20]. 

Today, transition metal-catalyzed enantioselective propargylic sub-
stitution reactions can be roughly classified into three different types 
based on the structures of the reactive intermediates: (i) via the formation 
of allenylidene intermediates [21], well investigated for Ru and Cu-cata-
lyzed propargylic substitution reactions of propargylic compounds bearing 
a terminal alkyne moiety [11,17–20]; (ii) via the formation of allenyl 
intermediates [22], well investigated for Pd- and Ni-catalyzed propargylic 
substitution reactions of propargylic compounds bearing an internal al-
kyne moiety [12–14,17]; and (iii) via the formation of propargylic radicals  
[23], first proposed for Ni-catalyzed cross-coupling reactions [24], but 
now extended to photocatalytic systems (Fig. 1d) [25]. In this review, 
enantioselective propargylic substitution reactions via transition meta-
l–allenylidene complexes as key reactive intermediates shall be discussed. 

2. Enantioselective propargylic substitution reactions via 
Ru–allenylidene complexes 

2.1. Catalytic propargylic substitution reactions via thiolate-bridged 
diruthenium–allenylidene complexes 

Since 2000, Nishibayashi and co-workers have successfully devel-
oped catalytic propargylic substitution reactions of propargylic alcohols 
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Fig. 1. (a) Formation of allene compounds as side products of propargylic substitution reactions. (b) Nicholas reaction. (c) Early examples of transition metal- 
catalyzed propargylic substitution reactions. (d) Three types of transition metal-catalyzed enantioselective propargylic substation reactions: (i) via allenylidene 
intermediates, (ii) via allenyl intermediates, and (iii) via propargylic radicals. 
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bearing a terminal alkyne moiety with a variety of nucleophiles by 
using thiolate-bridged diruthenium complexes such as [{Cp*RuCl(μ- 
SMe)}2] (1a, Cp* = η5-C5Me5) and [Cp*RuCl(μ-SiPr)2Ru(H2O)Cp*]OTf 
(1a+OTf–, Tf = CF3SO2) as catalysts (Fig. 2a) [26–31]. Several C- 
centered nucleophiles such as simple ketones [27,30] or alkenes [28], 
heteroatom-centered nucleophiles such as amines, amides, alcohols, or 
phosphine oxides [26,28–31], and H-centered nucleophiles [32] have 
been shown to applicable to this nucleophilic substitution reactions, 
whereas propargylation of aromatic compounds has been also shown to 
be applicable [33]. The thiolate-bridged diruthenium complexes, pre-
pared by Hidai and co-workers [34], have been known to afford the 
corresponding allenylidene complex by the stoichiometric reaction with 
propargylic alcohols [26,35]. Thus, a plausible catalytic cycle as shown 
in Fig. 2b has been proposed based on stoichiometric and catalytic re-
actions, kinetic studies, observation and isolation of several reactive 
intermediates as well as DFT calculations [31,36]. First, coordinatively 
unsaturated species (C) was formed via the dissociation of Cl– or H2O 
from 1a or 1a+, respectively, where coordination of a propargylic al-
cohol occurs to afford the π-alkyne complex (D), followed by the 1,2- 
shift of the terminal hydrogen atom to afford the vinylidene complex 
(E), and further dehydration to afford the allenylidene complex (F). 
Then a nucleophile attacks at the γ-carbon of the allenylidene ligand in 
F to afford the vinylidene complex (G), followed by the rearrangement 
of hydrogen atom to afford the π-alkyne complex (H), where the pro-
pargylic substituted product is liberated to recover the starting C. Here, 
DFT calculations have demonstrated the importance of the dimetallic 

structure of the thiolate-bridged diruthenium core, where one co-
ordinatively saturated ruthenium center works as an electron reservoir 
for the other ruthenium center in which transformation of substrates 
occurs [36]. The synergistic effect between two metal centers not only 
increases the electrophilicity of the γ-carbon atom of the allenylidene 
ligand in F, but also accelerate the ligand exchange of the propargylic 
substituted product with the propargylic alcohol. 

2.2. Ru-catalyzed enantioselective propargylic C–C bond formation 

The first successful catalytic enantioselective propargylic substitu-
tion reaction of propargylic alcohols was achieved by using a thiolate- 
bridged diruthenium complex bearing a chiral moiety [{Cp*RuCl(μ- 
SR*)}2] (1b, SR* = (R)-SCH(Et)C6H2Ph3-2,3,5) as a catalyst on treat-
ment with acetone, working as a C-centered nucleophile (Fig. 3a) [16]. 
It must be noted that the Ru–allenylidene complex [Cp*RuCl(μ-SR*)2Ru 
(CCCHPh)Cp* ]BF4 (1c', SR* = (R)-SCH(Et)C6H3Ph2-3,5) was isolable 
by the stoichiometric reaction of similar thiolate-bridged diruthenium 
complex bearing a chiral moiety [{Cp*RuCl(μ-SR*)}2] (1c), also known 
as a catalyst for the enantioselective propargylic substitution reactions  
[16], with a propargylic alcohol (Fig. 3b) [37]. Both crystallographic 
study of 1c' and DFT calculations have demonstrated the existence of an 
intramolecular CH/π interaction between the allenylidene moiety and 
the chiral ligand, which should play a critical role in the asymmetric 
induction of the enantioselective propargylic substitution reaction with 
the attack of a nucleophile from Si face (Fig. 3b) [37,38]. Consequently, 

Fig. 2. (a) Ru-catalyzed propargylic substitution reactions of propargylic alcohols with C-, N-, S-, or P-centered nucleophiles. (b) Plausible reaction pathway 
catalyzed by Ru2 system. 
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a series of thiolate-bridged diruthenium complexes bearing chiral 
moieties have supplied the first examples of catalytic enantioselective 
propargylic substitution reactions of propargylic alcohols [15,16]. 

Not only ketones but also alkenes can be applied as C-centered nu-
cleophiles toward the enantioselective propargylic substitution reactions 
via allenylidene–ene reactions. For example, 1c was found to catalyze 
diastereo- and enantioselective intramolecular cyclization of propargylic 

alcohols bearing alkene moieties to afford a variety of chiral heterocycles 
such as chromane, thiochromane, and tetrahydroquinoline derivatives in 
a good to high enantioselectivity (Fig. 3c) [39]. Furthermore, en-
antioselective propargylation of electron-rich aromatic compounds was 
also achieved by using 1b as a catalyst (Fig. 3d) [40,41]). 

Until recently, enantioselective propargylic alkylation of pro-
pargylic alcohols required alkylation nucleophiles activated by 

Fig. 3. (a) Ru-catalyzed enantioselective propargylic substitution reaction of propargylic alcohols with acetone. (b) Preparation of a Ru–allenylidene complex 
bearing a chiral ligand and its structure determined by an X-ray analysis. (c) Ru-catalyzed diastereo- and enantioselective intramolecular propargylic substitution 
reaction of propargylic alcohols. (d) Ru-catalyzed enantioselective propargylation of aromatic compounds. 
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functional groups such as aldehydes and ketones, while en-
antioselective propargylic alkylation of propargylic alcohols with non-
activated alkylation reagents was found to be difficult due to the re-
quirement of harsh conditions. One of the answers to this problem was 
to use alkyl radicals generated from 4-alkyl-1,4-dihydropyridines under 
visible light irradiation [42] instead of ionic alkylation nucleophiles. 
Indeed, dual photoredox- and Ni- or Pd-catalyzed propargylic alkyla-
tion of propargylic esters with 4-alkyl-1,4-dihydropyridines was re-
ported by Liang and co-workers [43], although enantioselective pro-
pargylic alkylation was not achieved. Thus, dual photoredox and 
diruthenium catalytic system, where the photoredox catalyst fac-[Ir 
(ppy)3] (2, ppy = 2-(pyridine-2-yl)phenyl) generates alkyl radicals 
from 4-alkyl-1,4-dihydropyridines under visible light irradiation, and 
the thiolate-bridged diruthenium catalyst bearing a chiral ligand 1b 
traps both propargylic alcohols and alkyl radicals, has been examined 
by Nishibayashi and co-workers to substantialize the enantioselective 
propargylic alkylation to afford the propargylic alkylated products 
bearing a quaternary stereogenic C center at the propargylic position in 
good to high yields with a high enantioselectivity (Fig. 4a) [44]. Based 

on the mechanistic studies and DFT calculations, a plausible catalytic 
reaction consisting of two catalytic cycles: photoredox and en-
antioselective propargylic substitution catalytic cycles can be drawn 
(Fig. 4b) [45]. In the photoredox catalytic cycle, the iridium catalyst 2 
is excited under visible light irradiation to afford a photoexcited iridium 
catalyst 2*, followed by a single-electron-transfer (SET) process with 4- 
alkyl-1,4-dihydropyridine to afford the reduced iridium catalyst 2–, an 
alkyl radical (R•), and a pyridinium cation via C−C bond scission. On 
the other hand in the enantioselective propargylic substitution reaction 
catalytic cycle, the coordinatively unsaturated species (I), generated 
from 1b, reacts with a propargylic alcohol to afford the allenylidene 
complex (J) via proton transfer and dehydration process accelerated by 
BF3·Et2O. Then, alkyl radical attacks at the γ-position of the allenyli-
dene ligand of J from Re face, where the asymmetric induction is 
brought about by π/π and CF/H interactions [45], to afford the alkynyl 
radical complex (K), followed by SET with 2– to afford the alkynyl 
complex (L). Further protonation occurs to afford the coordinatively 
unsaturated complex I and the propargylic alkylated product (Fig. 4b)  
[44]. Here, the diruthenium core acts as an electron pool to stabilize the 

Fig. 4. (a) Ru- and Ir-catalyzed photo-induced enantioselective propargylic alkylation of propargylic alcohols. (b) Plausible reaction pathways consisting of two 
catalytic cycles. 
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catalysis and to furnish the radical redox reaction, providing the first 
successful example of transition metal-catalyzed enantioselective pro-
pargylic substitution reactions with free alkyl radicals. 

Nonchiral thiolate-bridged diruthenium complexes were also shown 
to catalyze enantioselective propargylic substitution reactions, if the 
reactions were carried out in combination with chiral organocatalysts  

Fig. 5. (a) Ru- and enamine-catalyzed enantioselective propargylic alkylation of propargylic alcohols with aldehydes. (b) Plausible reaction pathways consisting of 
cooperative catalytic cycles. (c) Ru- and enamine-catalyzed enantioselective propargylic alkylation of propargylic alcohols with an α,β-unsaturated aldehydes. (d) 
Ru- and thiourea-catalyzed diastereo- and enantioselective intramolecular propargylic alkylation of propargylic alcohols. 
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[46,47]. For example by using the combination of 1a and the Haya-
shi–Jørgensen organocatalyst (S)-Me3SiOCArF

2-2-C4H7N (3a, ArF = 3,5- 
(CF3)2C6H4) [48] as a pair of catalysts, enantioselective propargylic 
alkylation of propargylic alcohols with aldehydes to afford propargylic 
alkylated products as a mixture of two diastereomers has been achieved 
(Fig. 5a) [49]. In this reaction system, the ruthenium–allenylidene 
complex (M) is formed by the reaction of the coordinatively un-
saturated complex A with a propargylic alcohol, whereas an enamine 
(N), generated in situ from an aldehyde and the Hayashi–Jørgensen 
organocatalyst 3a, attack at the γ-carbon atom of M as a suitable C- 
centered nucleophile to afford the propargylic alkylated product 
(Fig. 5b) [49]. Similar combination of catalysts (1a and 
(S)-tBuMe2SiOCArF

2-2-C4H7N (3b)) was applicable for the en-
antioselective alkylation of propargylic alcohols with an α,β-un-
saturated aldehyde (Fig. 5c) [50]. 

Jacobsen and co-works have also very recently examined the com-
bination of the nonchiral thiolate-bridged diruthenium complexes 
1a+OTs– (Ts = p-TolSO2) and a chiral bis(thiourea)-based hydrogen- 
bond donor (4), which has shown to catalyze the diastereo- and 

enantioselective intramolecular propargylic substitution reaction of 
propargylic alcohols containing alkene moieties to afford the corre-
sponding chromanes (Fig. 5d) [51], as have been synthesized by using a 
thiolate-bridged diruthenium complex bearing a chiral moiety 1c as a 
catalyst (Fig. 3c) [39]. Chiral thiourea-based organocatalysts have been 
known to furnish asymmetric induction via hydrogen bonds [52], and 
the binding of anions of 4 with the cationic 1a+ has been shown to 
induce enantioselectivity by DFT calculations [51]. 

Asymmetric propargylic substitution reactions were also shown to 
be realized by embedding the organocatalyst moiety onto the thiolate- 
bridged diruthenium core. Indeed, the hybrid thiolate-bridged dir-
uthenium complex bearing a chiral BINOL–phosphoramide moiety 
[{Cp*RuCl(μ-SR*)}2] (1d, R* = (R)-3,3′-Me2-1,1′-binaphthyl-2,2′-O2P 
(O)NH(CH2)3), with a chiral BINOL-phosphate-derived Brønsted acids  
[53] connected to the bridging thiolate ligand, was shown to catalyze 
diastereo- and enantioselective propargylic alkylation of propargylic 
alcohols with enecarbamates (Fig. 6a) [54]. 

Nishibayashi and co-workers also developed asymmetric pro-
pargylic substitution reactions via Ru–allenylidene complexes by 

Fig. 6. (a) Ru-catalyzed diastereo- and enantioselective propargylic alkylation of propargylic alcohols with enecarbamates. (b) Ru- and Cu/cybox-catalyzed dia-
stereo- and enantioselective propargylic alkylation of propargylic alcohols with β-keto esters. (c) Ru- and Cu/cybox-catalyzed diastereo- and enantioselective 
propargylic alkylation of propargylic alcohols with β-keto phosphates. 
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combing copper catalyst to activate C-centered nucleophiles. Indeed, 
diastereo- and enantioselective propargylic alkylation of propargylic 
alcohols with β-keto esters was achieved by using the thiolate-bridged 
diruthenium complex [{Cp*RuCl(μ-SiPr)}2] (1e), Cu(OTf)2, and a C2- 
symmetric chiral 2,2′-cyclopropylidene-bis(oxazoline) ligand (4R,5S)- 
Ph2-cybox (L1a) [55] as a set of catalysts (Fig. 6b) [56]. Here, β-keto 
ester is proposed to coordinate to the Cu species ligated by L1a to form 
a distorted tetrahedral Cu–enolate complex (O), working as a nucleo-
phile to attack at the Si face of the Ru–allenylidene complex (P) ob-
tained by the reaction of 1e with a propargylic alcohol from Re face of 
the enolate (Fig. 6b) [56]. Diastereo- and enantioselective alkylation of 
propargylic alcohols with β-keto phosphonates were also attained to 
afford the corresponding products (Fig. 6c) [57]. 

2.3. Ru-catalyzed enantioselective propargylic C–P bond formation 

Rather recently, diarylphosphine oxides were also found to be ap-
plicable as P-centered nucleophiles toward enantioselective propargylic 
substitution reactions of propargylic alcohols with a high enantios-
electivity (Fig. 7a) [58]. In this reaction system, introduction of the CF3 

group at the propargylic position of the propargylic alcohols was ne-
cessary to operate enantioselective substitution reactions. A stoichio-
metric reaction of 1c with a propargylic alcohol bearing a tri-
fluoromethyl group at the propargyl position afforded the 
corresponding allenylidene complex 1c'', from which the desired pro-
pargylic substituted product was obtained on treatment with a phos-
phine oxide (Fig. 7b) [58]. DFT calculations for the optimization of the 
molecular structure of 1c'' have demonstrate that the existence of π/π 
and CF/H interactions between the allenylidene moiety and the chiral 
ligands, where the nucleophiles can attack from the Re face (Fig. 7b)  

[45,58], reversing the stereoselectivity opposite to those obtained 
without the CF3 substituent (Fig. 3b) [37,38]. 

3. Enantioselective propargylic substitution reactions via 
Cu–allenylidene complexes 

3.1. Cu-catalyzed enantioselective propargylic C–N bond formation 

Catalytic propargylic amination of propargylic esters was first 
achieved in 1994 by using CuCl or CuBr as a catalyst (Fig. 1c) [6,7], 
although its detailed reaction mechanism was not clarified, and en-
antioselective propargylic amination was also not achieved [14]. In 
2008, groups of Nishibayashi and van Maarseveen independently re-
ported enantioselective propargylic amination almost simultaneously 
by using the combination of CuOTf·0.5C6H6 and a C2-symmetric che-
lating atropisomeric chiral phosphine ligand (R)-Cl-MeO-biphep (L2a)  
[59] (Fig. 8a) [60,61] or the combination of CuI and a C2-symmetric 
chiral 2,6-pyridine-bis(oxazoline) ligand (4R,5S)-Ph2-pybox ((R,S)-L3a)  
[55] as a set of catalysts, respectively (Fig. 8b) [62,63]. 

A plausible catalytic reaction pathway via the formation of 
Cu–allenylidene complex was proposed by Nishibayashi and co-workers 
for the CuOTf/L2a case based on DFT calculations (Fig. 8c) [61]. First a 
π-alkyne complex (Q) is formed via the reaction of CuOTf, L2a, and a 
propargylic alcohol, where iPr2NEt promotes the deprotonation process 
to afford the acetylide complex (R). Then, protonation occurs at the 
acetylide moiety to afford the protonated acetylide complex (S) by the  
iPr2NHEt+ species, where further deprotonation process takes place to 
afford the allenylidene complex (T) with the removal of acetate by  
iPr2NEt. Then an N-centered nucleophile can attack at the γ-position of 
the allenylidene ligand in T from Re face to afford the acetylide complex 

Fig. 7. (a) Ru-catalyzed enantioselective propargylic phosphinylation of propargylic alcohols with phosphine oxides. (b) Preparation of a Ru–allenylidene complex 
bearing a chiral ligand and its proposed structure based on DFT calculations. 
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(U), where the asymmetric induction is likely brought about by the CH/π 
interaction between the chiral ligand L2a and the allenylidene ligand in 
T. Another π-alkyne complex (V) is formed via the proton shift, followed 
by the ligand exchange with the propargylic alcohol to afford the starting 
π-alkyne complex Q and the propargylic aminated product. Cu–alleny-
lidene complexes have not been yet isolated until now, although several 

Ag– and Au–allenylidene complexes have been isolated [64,65], whose 
structures have been analyzed crystallographically. 

Since then, considerable amounts of combinations of Cu precursors 
and chiral ligands have been reported to catalyze propargylic sub-
stitution reactions of propargylic compounds, where chiral ligands can 
be roughly classified into diphosphine [59], bis(oxazoline) [55], bis 

Fig. 8. (a) Cu/biphep-catalyzed enantioselective propargylic amination of propargylic esters with secondary amines. (b) Cu/Ph2-pybox-catalyzed enantioselective 
propargylic amination of propargylic esters with primary amines. (c) Plausible reaction pathway catalyzed by Cu/biphep system. 
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(imidazoline) [66], tridentate ketimine P,N,N-type [67], N-Heterocyclic 
carbene (NHC) [68], and other ligands. From here, catalytic en-
antioselective propargylic C–N, C–C, C–O, or C–S bond formation under 
optimized reaction conditions for each article will be summarized ac-
cording to varieties of chiral ligands. 

Similar chiral diphosphine ligand (R)-DTBM-MeO-biphep (L2b) was 
also found to catalyze enantioselective ring-opening propargylic ami-
nation of ethynyl epoxides with amines to afford β-quaternary β-amino 

alcohols in combination with CuOTf (Fig. 9a) [69], whereas Cu-cata-
lyzed enantioselective propargylic amination of propargylic esters with 
anilines was also achieved by using the well-known chiral diphosphine 
ligand (R)-BINAP ((R)-L4a) (Fig. 9b) [70]. Chiral dihydrobenzofuran- 
based diphosphine (R)-BICMAP (L5), prepared by Mino and co-workers  
[71], also worked efficiently for Cu-catalyzed enantioselective pro-
pargylic amination of propargylic esters with amines (Fig. 9c) [72]. 
Cordier and co-workers found that another chiral diphosphine ligand 

Fig. 9. (a) Cu/biphep-catalyzed enantioselective ring-opening propargylic amination of ethynyl epoxides with amines. (b) Cu/BINAP-catalyzed enantioselective 
propargylic amination of propargylic esters with anilines. (c) Cu/BICMAP-catalyzed enantioselective propargylic amination of propargylic esters with amines. (d) 
Cu/Tol-BINAP-catalyzed enantioselective intramolecular propargylic O-to-N migration of propargylic ethers. 
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Fig. 10. (a) Cu/Ph2-pybox-catalyzed enantioselective propargylic substitution reaction of propargylic carbonates with hydrazones. (b) Cu/Ph2-pybox-catalyzed 
enantioselective decarboxylative propargylic amination of cyclic propargylic carbonates with anilines. (c) Cu/Me-pybox-catalyzed enantioselective propargylic 
amination of propargylic esters with o-anisidine. (d) Cu/Me-pybox- or Ph-pybox-catalyzed enantioselective intramolecular amination of propargylic esters. (e) Cu/ 
Ph-pybox-catalyzed enantioselective ring-opening propargylic amination of alkynyl oxetanes with anilines. 
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(R)-Tol-BINAP (L4b) was effective in combination with CuTC (TC = 2- 
thiophenecarboxylate) for enantioselective intramolecular O-to-N 
formal [1,3]-rearrangement of propargylic ethers to afford N-pro-
pargylic-2-pyridones (Fig. 9d) [73]. 

A series of pybox-type ligands [55] have been found to furnish 
several propargylic amination reactions in combination with Cu pre-
cursors. As for the Ph2-pybox ligand already mentioned in Fig. 8b [62], 
Nishibayashi and co-workers applied the combination of CuOTf and 
(S,R)-Ph-pybox ((S,R)-L3a) to enantioselective propargylic substitution 
reaction of propargylic carbonates with hydrazones to afford the pro-
pargylic aminated products (Fig. 10a) [74]. On the other hand, W. Guo 
and co-workers applied (S,R)-L3a to Cu-catalyzed enantioselective 
decarboxylative amination of cyclic propargylic carbonates with ani-
lines to afford chiral α-quaternary α-amino ketones (Fig. 10b) [75]. 

(S)-Me-pybox ((S)-L3b) was introduced as a chiral ligand to co-
ordinate to Cu species by van Maarseveen and co-workers to catalyze 
enantioselective propargylic amination of propargylic esters or carbo-
nates with o-anisidine to afford the propargylic aminated compounds 
(Fig. 10c, Piv = tBuCO) [63]. Similar catalytic system of CuI and (S)- 
L3b or (S)-Ph-pybox ((S)-L3c) was applied to enantioselective in-
tramolecular propargylic amination of propargylic esters to afford 1- 

ethynyl-isoindolines by Nishibayashi and co-workers (Fig. 10d) [76]. 
Cu(OTf)2/(R)-Ph-pybox ((R)-L3c) pair was recently applied by Kleij and 
co-workers to enantioselective ring-opening propargylic amination of 
alkynyl oxetanes with anilines to afford γ-quaternary γ-amino alcohols 
(Fig. 10e) [77]. 

Kleij and co-workers also reported Cu-catalyzed enantioselective 
ring-opening propargylic amination of γ-butyrolactone to afford γ- 
quaternary γ-amino acids by using (R)-β-Naph-pybox (L3d) as a chiral 
ligand (Fig. 11a) [78], whereas X. Zhang and co-workers reported Cu- 
catalyzed enantioselective decarboxylative propargylic substitution re-
action of cyclic propargylic carbonates with amines to give β-qua-
ternary β-amino alcohols by using (S)-Bn-pybox (L3e) as a chiral ligand 
(Fig. 11b) [79]. You and co-workers utilized (S)-FC6H4-pybox (L3f) as a 
chiral ligand in combination with CuCl to catalyze propargylic sub-
stitution reaction of propargylic esters with 4-hydroxypyridines or 4- 
hydroxypyrimidin to afford N-alkylated 4-pyridones or N-alkylated 4- 
pyrimidone, respectively (Fig. 11c) [80]. 

On the other hand, Sun and a co-worker developed enantioselective 
decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic 
carbamates with hexahydro-1,3–5-triazines to afford tetra-
hydroquinazolines by using the combination of [Cu(NCMe)4]PF6 and 

Fig. 11. (a) Cu/β-Naph-pybox-catalyzed enantioselective ring-opening propargylic amination of γ-butyrolactone with amines. (b) Cu/Bn-pybox-catalyzed en-
antioselective decarboxylative propargylic amination of cyclic propargylic carbonates with amines. (c) Cu/FC6H4-pybox-catalyzed enantioselective propargylic 
amination of propargylic esters with 4-hydroxypyridines or 4-hydroxypyrimidine. 

Y. Tanabe and Y. Nishibayashi                                                                                                                                           Coordination Chemistry Research 1 (2024) 100003 

12 



Fig. 12. (a) Cu/Inda-pybox-catalyzed enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic carbamates with hexahydro-1,3,5- 
triazines. (b) Cu/Inda-pybox-catalyzed regio- and enantioselective alkynylallylic amination of 1,3-enynes with amines. (c) Cu/Inda-pybox-catalyzed regio- and 
enantioselective decarboxylative intramolecular alkynylallylic amination of carbamate-tethered 1,3-enynes. (d) Cu/Inda-pybox-catalyzed regio- and enantioselective 
alkynylallylic amination of 1,3-enynes with diaminomethanes. (e) Cu/Ph2-MeO-pybox-catalyzed enantioselective propargylic amination of propargylic esters with 
amines. 
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(3aR,8aS)-Inda-pybox (L3g) as a pair of catalysts (Fig. 12a, p-Ns = p- 
NO2C6H4SO2) [81]. Similar pair of catalysts have been recently applied 
by He and co-workers to regio- and enantioselective alkynylallylic 
substitution reaction of 1,3-enynes bearing tert-butylcarbonate as a 
leaving group remote from the alkyne moiety with amines to afford 
alkynylallylic aminated 1,4-enynes (Fig. 12b) [82]. Here, alkynylallylic 
aminated 1,4-enynes have been obtained as the major products, with 
alkenylic aminated 1,4-enynes obtained rather as minor products. In 
addition, regio- and enantioselective decarboxylative intramolecular 
alkynylallylic amination of carbamate-tethered 1,3-enyenes has been 
found to be catalyzed by the same Cu/ligand pair (Fig. 12c) [82]. More 
recently, the same chiral ligand has been shown to mediate Cu-cata-
lyzed regio- and enantioselective alkynylallylic amination of 1,3-enynes 
by using diaminomethanes as N-centered nucleophiles (Fig. 12d) [83]). 

On the other hand, (4R,5S)-Ph2-MeO-pybox (L3h) has been utilized 
by W. Guo and co-workers as a chiral ligand for Cu-catalyzed en-
antioselective propargylic amination of propargylic esters to construct 
protected propargylic α-quaternary α-amino acids (Fig. 12e) [84]. 

More recently, Zhou and co-workers have reported Cu-catalyzed 
enantioselective propargylic amination of propargylic carbonates with 
amines to give propargylic aminated products by using (4R,5S)-Ph2-3,5- 
(MeO)2C6H3CH2O-pybox (L3i) or (4R,5S)-Ph2-ArFCH2O-pybox (L3j) as 
a chiral ligand bearing a bulky shielding group at the C4 position of 
pyridine (Fig. 13a) [85]. Here, introduction of bulky shielding groups 
was necessary to achieve high enantioselectivity [86]. DFT calculations 
have demonstrated that the key reactive intermediate is Cu2–bridging 
allenylidene complex (W), where nucleophiles can attack from Re face 
(Fig. 13a) [85]. 

Interestingly, Cu-catalyzed yne-propargylic substitution reaction of 
diynes has been very recently reported by Fang and co-workers using 
(S)-Cy-pybox (L3k) as a chiral ligand, although enantioselectivity is still 
rather low (Fig. 13b) [87]. 

Other than chiral diphosphine or oxazoline ligands, Hu and co- 
workers have introduced several chiral tridentate ketimine P,N,N-type 
ligands to Cu-catalyzed enantioselective propargylic amination chem-
istry [67]. Indeed, Cu-catalyzed enantioselective propargylic amination 

Fig. 13. (a) Cu/Ph2-3,5-(MeO)2C6H3CH2O-pybox- or Ph2-ArFCH2O-pybox-catalyzed enantioselective propargylic amination of propargylic carbonates with amines. 
(b) Cu/Cy-pybox catalyzed enantioselective yne-propargylic amination of diynyl carbonate with aniline. 
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Fig. 14. (a) Cu/Me-Fc-PNN- or Me-PNN-catalyzed enantioselective propargylic amination of propargylic esters with amines. (b) Cu/Me-Ph-PNN-catalyzed en-
antioselective decarboxylative intramolecular propargylic amination of propargylic esters. (c) Cu/Me-Ph-PNN-catalyzed enantioselective N-propargylation of in-
doles. (d) Cu/Me-Ph-PNN- and Cu/Ph-pybox-catalyzed diastereo- and enantioselective dipropargylic amination of propargylic esters with 1,2,3,4-tetra-
hydroquinoxalines. 
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of aryl or alkyl propargylic esters with amines as N-centered nucleo-
philes was successful by employing (Sc,Rp)-Me-Fc-PNN ((Sc,Rp)-L6a) or 
(R)-Me-PNN (L6b) as a chiral ligand, respectively (Fig. 14a) [88], 
whereas enantioselective decarboxylative intramolecular propargylic 
amination of propargylic esters was achieved by employing (S)-Me-Ph- 
PNN ((S)-L6c) as a chiral ligand (Fig. 14b) [89]. The same Cu/chiral 
ligand pair was applicable for enantioselective N-propargylation of in-
dolines, followed by dehydrogenation of indolines with DDQ (2,3-di-
chloro-5,6-dicyano-1,4-benzoquinone) to afford N-propargylindoles 
(Fig. 14c) [90]. The same Cu/ligand pair has been also applicable to Cu- 
catalyzed diastereo- and enantioselective dipropargylic amination of 
aryl propargylic esters to afford bis(propargylic) diamines, whereas 

similar diastereo- and enantioselective dipropargylic amination of alkyl 
propargylic esters was rather achieved with the combination with (S)- 
L3c (Ph-pybox) (Fig. 14d) [91]. 

Xu and co-workers also utilized (S)-L6c as a chiral ligand for Cu- 
catalyzed enantioselective propargylic amination of propargylic esters 
or carbonates with amines (Fig. 15a) [92], whereas similar chiral ligand 
(S)-Me-py-PNN (L6d) was already examined for Cu-catalyzed en-
antioselective propargylic amination of propargylic esters or carbonates 
with allylic amines (Fig. 15b) [93]. 

Precursor of NHC ligands [68] was also found to be effective for Cu- 
catalyzed enantioselective propargylic C–N bond formation. Jiang and 
co-workers used the combination of Cu(OAc)2 and an aminoindane- 

Fig. 15. (a) Cu/Me-Ph-PNN-catalyzed enantioselective propargylic amination of propargylic esters with amines. (b) Cu/Me-py-PNN-catalyzed enantioselective 
propargylic amination of propargylic esters with allylic amines. (c) Cu/NHC-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 3] an-
nulation of cyclic propargylic carbamates with C,N-cyclic azomethine imines. 
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based triazolium salt (5aS,10bR)-Inda-C6H2Cl3-N3 (L7a), the precursor 
for an N-heterocyclic carbene (NHC) (L7a'), as a pair of catalysts for 
diastereo- and enantioselective decarboxylative ring-opening [4 + 3] 
annulation of cyclic propargylic carbamates with C,N-cyclic azomethine 
imines to afford isoquinoline-fused triazepine derivatives (Fig. 15c) [94]. 

Very recently, X. Wang and co-workers have reported the isolation of 
a well-defined dicopper complex [Cu2I2(L8a)] (5a), which is chelated by 
a tetradentate nitrogen-containing ligand bearing two chiral oxazoline 
units bridged by a benzo[c]cinnoline linker containing tBu substituent on 
oxazoline unit (S)-tBu-bcbox (L8a), whose structure has been determined 
by crystallographic study (Fig. 16a) [95]. 5a has been shown to work as a 
catalyst for enantioselective propargylic amination of a propargylic al-
cohol with aniline to afford the (R)-isomer (Fig. 16b) [95], where for-
mation of a dicopper–allenylidene complex (5a') in situ as well as the 
attack of aniline as an N-centerd nucleophile from the Re face of the 
allenylidene unit is suggested by DFT calculations (Fig. 16b) [95]. Si-
milarly, dicopper complex [Cu2I2(L8b)] (5b), chelated by a tetradentate 
nitrogen-containing ligand bearing two chiral oxazoline units bridged by 
a benzo[c]cinnoline linker containing indane skeleton with cyclohexyl 
substituent on oxazoline unit (3aR,8aS)-Cy-Inda-tBu-bcbox (L8b), has 
been isolated (Fig. 16c) [95], which has been shown to work as a better 

catalyst for enantioselective propargylic amination of tertiary or qua-
ternary propargylic esters or carbonates with amines to afford pro-
pargylic aminated products as (S)-isomers (Fig. 16d and e) [95]. 

3.2. Cu-catalyzed enantioselective propargylic C–C bond formation 

Cu-catalyzed enantioselective propargylic substitution reaction with 
C-nucleophiles was first achieved by Hou and a co-worker, who used 
the combination of [Cu(NCMe)4]ClO4 and L2a ((R)-Cl-MeO-biphep) as 
a pair of catalysts for enantioselective propargylic alkylation of pro-
pargylic esters with enamines to afford β-ethynyl-substituted ketones 
(Fig. 17a) [96]. 

On the other hand, Nishibayashi and co-workers examined the 
combination of CuOTf and racemates of BINAP (rac-L4a) in the pre-
sence of a Hayashi–Jørgensen organocatalyst 3a to catalyze en-
antioselective propargylic alkylation of propargylic esters with alde-
hydes to afford the corresponding propargylic alkylated products as a 
mixture of two diastereomers (Fig. 17b) [97]. Here, asymmetric in-
duction is supposed to brought about by the organocatalyst 3a, which 
reacts with an aldehyde to afford a chiral enamine N, working as a C- 
centered nucleophile to attack at the Re face of the allenylidene ligand 

Fig. 16. (a) Preparation of well-defined dicopper complex bearing a benzo[c]cinnoline-linked bisoxazoline ligand with tBu substituent. (b) Cu-catalyzed en-
antioselective propargylic amination of a propargylic carbonate with aniline (c) Preparation of well-defined dicopper complex bearing a benzo[c]cinnoline-linked 
bisoxazoline ligand with Cy substituent and indane skeleton. (d) Cu-catalyzed enantioselective propargylic amination of tertiary propargylic esters or carbonates with 
anilines to construct tertiary stereogenic C centers. (e) Cu-catalyzed enantioselective propargylic amination of quaternary propargylic esters with anilines. 
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of a Cu–allenylidene complex (X) from Si face of the enamine, where 
both ArF substituents of the enamine and 1-naphthyl group of the al-
lenylidene ligand do not collide with each other (Fig. 17c) [97]. 

A variety of pybox ligands have been applied to Cu-catalyzed en-
antioselective propargylic C–C bond formation. For example, en-
antioselective propargylation of indoles was achieved by van 
Maarseveen and co-workers, who used the combination of CuI and 
(R,S)-L3a (Ph2-pybox) as a pair of catalysts (Fig. 18a) [63], while dia-
stereo- and enantioselective propargylation of indoles followed by 
dearomatization to afford furoindolines or pyrroloindolines was re-
ported by You and co-workers using the same pair of catalysts 
(Fig. 18b) [98]. Using the similar pair of CuOTf·0.5C6H6 and (S,R)-L3a, 
Nishibayashi and co-workers succeeded in the construction of en-
antioselective propargylation of indoles to afford the desired products 
bearing a quaternary stereogenic C center at the propargylic position 
(Fig. 18c) [99]. Here, a dicopper complex bearing (S,R)-L3a as an 
auxiliary ligand [Cu2(μ-Cl((S,R)-L3a)2][CuCl2] (6) was independently 
prepared (Fig. 18d) [99], which showed similar catalytic activity to-
ward enantioselective propargylation of indoles, demonstrating that the 
key reactive intermediates may be Cu2–bridging allenylidene species. 
Cu-catalyzed enantioselective propargylation of indolizines was also 
reported by X. Zhang and co-workers (Fig. 18e) [100], who also suc-
ceeded in Cu-catalyzed enantioselective difluoroalkylation of secondary 
propargyl sulfonates (Mes = 2,4,6-Me3C6H2) with difluoroenoxysilanes 
(Fig. 18f) [101]. 

Combination of [Cu(NCMe)4]PF6 and (S)-L3b (Ph-pybox) was ex-
amined by Fang and co-workers, who performed enantioselective 
semipinacol-type rearrangement of cyclic propargylic carbonates con-
taining cyclobutyl ring via decarboxylative ring-opening propargylic 
alkylation to afford cyclopentanone derivatives bearing a quaternary 
stereogenic C center at the propargylic position (Fig. 19a) [102]. Si-
milar ring expansion of cyclic propargylic carbonates containing aza-
cyclobutane or oxetane units was also found to be catalyzed by the 
combination of [Cu(NCMe)4]PF6 and (S)-L3b or (S)-iPr-pybox (L3l) via 
decarboxylative ring-opening propargylic alkylation to afford pyrro-
lidin-3-one or tetrahydrofuran-3-one derivatives bearing a quaternary 
stereogenic C center at the propargylic position (Fig. 19b and c) [102]. 

A series of enantioselective decarboxylative ring-opening annulation 
of cyclic propargylic carbamates with C-centered nucleophiles have 
been shown to be catalyzed by the combination of Cu precursors with 
(R)-L3c or (S)-L3c (Ph-pybox). For example, Xiao and co-workers de-
monstrated diastereo- and enantioselective decarboxylative ring- 
opening [4 + 1] annulation of cyclic propargylic carbamates with 
sulfur ylides to afford indolines by using Cu(OTf)2 and (R)-L3c as a pair 
of catalysts Fig. 20a) [103]. On the other hand, Wu and co-workers 
demonstrated diastereo- and enantioselective decarboxylative ring- 
opening [4 + 2] annulation of cyclic propargylic carbamates with aryl 
acetic acids to afford quinolines by using the combination of [Cu 
(NCMe)4]BF4, (S)-L3c, and a benzotetramisole (BTM)-type Lewis base 
organocatalyst (S)-Me-BTM (7a) [52] as a set of catalysts (Fig. 20b, o-Ns 

Fig. 17. (a) Cu/biphep-catalyzed enantioselective propargylic alkylation of propargylic esters with enamines. (b) Cu/BINAP- and thiourea-catalyzed enantioselective 
propargylic alkylation of propargylic esters with aldehydes. (c) Plausible asymmetric induction for Cu/BINAP and thiourea system. 
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Fig. 18. (a) Cu/Ph2-pybox-catalyzed enantioselective propargylation of indoles. (b) Cu/Ph2-pybox-catalyzed diastereo- and enantioselective propargylic dear-
omatization of indoles. (c) Cu/Ph2-pybox-catalyzed enantioselective propargylation of indoles to construct quaternary stereogenic C centers. (d) Preparation of 
dicopper complex ligated by Ph2-pybox. (e) Cu/Ph2-pybox-catalyzed enantioselective propargylation of indolizines. (f) Cu/Ph2-pybox-catalyzed enantioselective 
difluoroalkylation of propargylic sulfonates with difluoroenoxysilanes. 
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= o-NO2C6H4SO2) [104]. In this reaction system, addition of 7a, sup-
posed to react with an aryl acetic acid to form a Z-enolate (Y) with 
enolate O positioned syn to S of BTM and with its Re face sterically 
hindered by the methyl group, attacks from its Si face at the γ-C in the 
Re face of Cu–allenylidene complex (Z), generated from CuI, (S)-L3c, a 
cyclic propargylic carbamate, and iPr2NEt via decarboxylative process, 
improving both diastereoselectivity and enantioselectivity (Fig. 20c)  
[104]. Diastereo- and enantioselective decarboxylative ring-opening 
[4 + 2] annulation of cyclic propargylic carbamates with azalactones to 
afford 3,4-dihydroquinolin-2-one derivatives was reported by X.-W. 
Wang and co-workers (Fig. 20d) [105], whereas diastereo- and en-
antioselective decarboxylative ring-opening [3 + 2] annulation of 
cyclic propargylic carbamates with γ-butenolides to afford pyrrolidi-
nones bearing a quaternary stereogenic C center at the propargylic 
position was reported by Hu and co-workers (Fig. 20e) [106]. 

Diastereo- and enantioselective decarboxylative ring-opening 
[3 + 2] annulation of fused cyclic propargylic carbamates with aza-
lactones to afford pyrrolo[1,2-a]indoles via the formation of isolable 
propargylation intermediates was examined by Deng and co-workers 
(Fig. 21a) [107]. Yuan and co-workers demonstrated decarboxylative 
[3 + 2] annulation of cyclic propargylic carbonates with azalactones to 
afford γ-butyrolactones (Fig. 21b) [108], or diastereo- and en-
antioselective decarboxylative ring-opening [3 + 2] annulation of 

cyclic carbamates with azalactones to afford γ-butyrolactams (Fig. 21c)  
[109], both bearing two vicinal quaternary stereogenic C centers. 

Recently, Gong and co-workers have developed diastereo- and en-
antioselective stereodivergent propargylic alkylation of propargylic 
esters with enals by using the combination of [Cu(NCMe)4]PF6, (S)-L3c, 
and an aminoindane-based triazolium salt (5aR,10bS)-Inda-Mes-N3 

(L7b), the precursor for an N-heterocyclic carbene (NHC) (L7b') [68] as 
a set of catalysts (Fig. 22a) [110]. In this reaction system, co-
ordinatively unsaturated species (AA) generated from [Cu(NCMe)4]PF6 

and (S)-L3c activates a propargylic ester toward the formation of an 
allenylidene complexes (AB), whereas L7b' reacts with an enal to form 
an NHC-bound nucleophile (AC), which couples with AB to afford the 
desired product both diastereo- and enantioselectively (Fig. 22b) [110]. 

Combination of [Cu(NCMe)4]PF6 and (S)-L3c has been also shown 
to catalyze diastereo- and enantioselective propargylic alkylation of 
propargylic carbonates with 2,2,2-trifluoroethyl-isoxazoles by Wu and 
co-workers (Fig. 22c) [111]. He and co-workers have also demonstrated 
regio-, enantio- and (E)-selective alkynylallylic monofluoroalkylation of 
1,3-enynes on treatment with fluorinated malonates (Fig. 22d) [112]. 

He and co-workers have also examined the combination of Cu 
(OTf)2·0.5PhMe, L3g (Inda-pybox), and dibenzo-1,4-oxaborine-derived 
borinic acid (8) [113] as a set of catalysts for regio- and en-
antioselective alkynylallylic alkylation of 1,3-enyne bearing a leaving 

Fig. 19. (a) Cu/Me-pybox-catalyzed enantioselective decarboxylative semipinacol rearrangement of cyclic propargylic carbonates bearing cyclobutane units to 
afford cyclopentanone derivatives. (b) Cu/Me-pybox-catalyzed enantioselective decarboxylative semipinacol rearrangement of cyclic propargylic carbonates bearing 
oxetane units to afford five-membered heterocycle derivatives. (c) Cu/iPr-pybox-catalyzed enantioselective decarboxylative semipinacol rearrangement of cyclic 
propargylic carbonates bearing azacyclobutane units to afford five-membered heterocycle derivatives. 
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Fig. 20. (a) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 1] annulation of cyclic propargylic carbamates with sulfur 
ylides. (b) Cu/Ph-pybox- and BTM-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic carbamates with 
aryl acetic acid. (c) Plausible asymmetric induction for Cu/Ph-pybox and BTM system. (d) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative 
ring-opening [4 + 2] annulation of cyclic propargylic carbamates with azalactones. (e) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative ring- 
opening [3 + 2] annulation of cyclic propargylic carbamates with γ-butenolides. 
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Fig. 21. (a) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 2] annulation of fused cyclic propargylic carbamates with 
azalactones. (b) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 2] annulation of cyclic propargylic carbonates with 
azalactones. (c) Cu/Ph-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 2] annulation of cyclic propargylic carbamates with 
azalactones. 

Y. Tanabe and Y. Nishibayashi                                                                                                                                           Coordination Chemistry Research 1 (2024) 100003 

22 



Fig. 22. (a) Cu/Ph-pybox- and NHC-catalyzed diastereo- and enantioselective propargylic alkylation of propargylic esters with enals. (b) Plausible reaction pathways 
for dual catalytic systems. (c) Cu/Ph-pybox-catalyzed diastereo- and enantioselective alkylation of propargylic carbonates with 2,2,2-trifluoroethyl-isoxazoles. (d) 
Cu/Ph-pybox-catalyzed regio-, enantio-, and (E)-selective monofluoroalkylation of 1,3-enynes with fluorinated malonates. 
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group remote from the alkyne moiety with 4-vinyl morpholine to afford 
alkynylallylic alkylated product (Fig. 23a) [82]. Here, the borinic acid 
catalyst 8 traps 4-vinyl morpholine to activate as a C-centered nu-
cleophile. Similarly, combination of [Cu(NCMe)4]PF6, L3g, and a BTM- 
type organocatalyst (S,R)-Ph,iPr-HBTM (7b) [52] was applied by Deng 
and co-workers to diastereo- and enantioselective decarboxylative ring- 
opening [3 + 2] annulation of cyclic propargylic carbamates with aryl 
acetic acids to afford pyrrolo[1,2,-a]indoles (Fig. 23b) [114]. 

Similarly, Gong an co-workers applied the combination of [Cu 
(NCMe)4]PF6, L3l (iPr-pybox), and a BTM-type organocatalyst (R)-Ph- 
BTM (7c) as a set of catalysts to diastereo- and enantioselective dec-
arboxylative ring-opening [4 + 2] annulation of cyclic propargylic car-
bamates with aryl or allylic acetonitriles to afford 3,4-dihydroquinolin-2- 
one derivatives (Fig. 24a) [115]. On the other hand, Mukherjee and a co- 
worker demonstrated diastereo- and enantioselective decarboxylative 
ring-opening [4 + 2] annulation of cyclic propargylic carbamates with 
vinylogous aza-enamines to afford tetrahydroquinoline derivatives 
bearing 1,3-stereocenters by using the combination of [Cu(NCMe)4]PF6 

and L3l as a pair of catalysts (Fig. 24b) [116]. 
Combination of CuBr and (S,S)-sec-Bu-pybox (L3m) was examined 

by Wu and co-workers for diastereo- and enantio-selective propargy-
lation of benzofuranones (Fig. 24c) [117] and enantioselective pro-
pargylic substitution reactions of propargylic esters with trialkyl me-
thanetricarbonates (Fig. 24d) [118]. 

You and a co-worker utilized the combination of CuI and (S)-Cu/tBu- 
Ph2-pybox (L3n) catalyzed as a pair of catalysts toward diastereo- and 
enantioselective decarboxylative ring-opening [4 + 2] annulation of 

cyclic propargylic carbamates with indoles to afford tetrahydro-5H- 
Indolo[2,3-b]quinolines bearing vicinal quaternary stereogenic C cen-
ters through propargylic dearomatization process (Fig. 25a) [119]. 

(R)-HOCH2-pybox (L3o) was utilized by Xiao and co-workers in 
combination with CuI for enantioselective propargylic substitution re-
action of propargylic esters with stable phosphonium tetra-
fluoroborates, to afford propargylic phosphine ylides, where further 
Wittig reaction undergoes to afford α-propargylic acrylates or alleno-
ates on treatment with in situ-generated ketenes derived from formalin 
or acyl chloride, respectively (Fig. 25b) [120]. 

Carreira and a co-worker utilized the combination of [Cu(NCMe)4] 
PF6 and (S)-3,4,5-(MeO)3C6H2-pybox (L3p) to catalyze enantioselective 
intramolecular propargylic substitution reaction of a propargylic ester 
bearing a pyrrole moiety to afford 8-ethynyl-5,6,7,8-tetra-
hydroindolizine bearing a quaternary stereogenic C-center at the pro-
pargylic position (Fig. 25c) [121]. 

Diastereo- and enantioselective decarboxylative ring-opening 
[4 + 2] annulation of cyclic propargylic carbamates with 2-siloxyfurans 
was examined by Wu and co-workers by using the combination of [Cu 
(NCMe)4]BF4 and (S)-Bn-Ph2-pybox (L3q) as a pair of catalysts to afford 
tetrahydroquinolines fused with γ‑lactone moiety (Fig. 26a, Bs = 
PhSO2) [122]. 

On the other hand, Niu and co-workers used the combination of [Cu 
(NCMe)4]BF4, (S)-Me-Cl-pybox (L3r), and ZnEt2 or Ti(OiPr)4 as a set of 
catalysts for diastereo- and enantioselective propargylation of 5H- 
thiazol-4-ones or 5H-oxazol-4-ones to afford the desired products 
bearing two vicinal quaternary stereogenic C centers (Fig. 26b) [123]. 

Fig. 23. (a) Cu/Inda-pybox- and borinic acid-catalyzed regio- and enantioselective alkynylallylic alkylation of 1,3-enyne with 4-vinyl morpholine. (b) Cu/Inda- 
pybox- and BTM-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 2] annulation of 1-ethynyl oxazolo[3,4-a]indol-3-one with aryl acetic 
acid. 
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Fig. 24. (a) Cu/iPr-pybox- and BTM-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic carbamates 
with aryl or allylic acetonitriles. (b) Cu/iPr-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic 
carbamates with vinylogous aza-enamines. (c) Cu/sec-Bu-pybox-catalyzed diastereo- and enantioselective propargylation of benzofuranones. (d) Cu/sec-Bu-pybox- 
catalyzed enantioselective propargylic substitution reaction of propargylic esters with trialkyl methanetricarboxylates. 
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Here, ZnEt2 or Ti(OiPr)4 works as a Lewis acidic oxophilic base likely 
preferentially binding to 5H-thiazol-4-ones or 5H-oxazol-4-ones to in-
crease their nucleophilicity. The same combination of catalysts was 
utilized by C.-J. Wang and co-workers for enantioselective propargylic 
alkylation of propargylic carbonates with salicylaldehyde-derived 
imine esters to afford α-amino acid derivatives (Figure 26c) [124]. 

Combination of [Cu(NCMe)4]BF4, (S)-tBu-pybox (L3s), and (R,R)- 
Takemoto urea organocatalyst ((R,R)-9a) [125] as a set of catalysts was 
applied by Mukherjee and co-workers to diastereo- and enantioselective 
decarboxylative ring-opening propargylic [4 + 2] annulation of cyclic 
propargylic carbamates bearing sulfonate substituents with azalactones 
to afford 3,4-dihydroquinolin-2-one derivatives containing an α- 

Fig. 25. (a) Cu/tBu-Ph2-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic carbamates with 
indoles. (b) Cu/HOCH2-pybox-catalyzed enantioselective propargylic substitution reaction of propargylic esters with stable phosphine ylides, followed by the Wittig 
reaction with in situ-generated ketenes. (c) Cu/3,4,5-(MeO)3C6H2-pybox-catalyzed enantioselective intramolecular propargylic substitution reaction of a propargylic 
ester. 
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Fig. 26. (a) Cu/Bn-Ph2-pybox-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 2] annulation of cyclic propargylic carbamates with 2- 
siloxyfurans. (b) Cu/Me-Cl-pybox- and Zn or Ti-catalyzed diastereo- and enantioselective propargylation of 5H-thiazol-4-ones or 5H-oxazol-4-ones. (c) Cu/Me-Cl- 
pybox-catalzyed enantioselective propargylic alkylation of propargylic carbonates with salicylaldehyde-derived imine esters. (d) Cu/tBu-pybox- and urea-catalyzed 
diastereo- and enantioselective decarboxylative ring-opening propargylic [4 + 2] annulation of cyclic propargylic carbamates with azalactones. 
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Fig. 27. (a) Cu/Me-(4-EtC6H4)2-pybox-catalyzed diastereo- and enantioselective propargylic alkylation of propargylic esters or carbonates with nitroacetates. (b) 
Cu/iBu-pybox-catalyzed enantioselective propargylation of 2-oxindole-3-carboxylate esters. (c) Cu/iBu-pybox- and urea-catalyzed diastereo- and enantioselective 
decarboxylative ring-opening propargylic alkylation of cyclic propargylic carbamates with α-cyanoacetates. (d) Cu/3,5-tBu2C6H3-pybox-catalyzed enantioselective 
decarboxylative ring-opening propargylic [3 + 2] annulation of cyclic propargylic 4-methylene carbamates with dienol silyl ethers. 
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Fig. 28. (a) Cu/Ph-cybox-catalyzed regio- and enantioselective decarboxylative ring-opening propargylation of 3-amino oxindoles. (b) Cu/Inda-Me2box- and urea- 
catalyzed enantioselective decarboxylative ring-opening [3 + 2] annulation of cyclic propargylic carbonates or carbamate with malononitrile. (c) Cu/Ph2-Me-pybim- 
and Mg-catalyzed regio- and enantioselective propargylic alkylation of propargylic carbonates or esters with β-keto esters. (d) Cu/Ph2-pybim- and Li-catalyzed regio- 
and enantioselective propargylic alkylation of propargylic carbonates with N-acyl phenylglycine N-hydroxyphthalimide esters. 
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quaternary α-acylaminoamide substituent at the propargylic position 
(Fig. 26d) [126]. 

(S)-Me-(4-EtC6H4)2-pybox (L3t) was employed by Wu and co- 
workers as a chiral ligand in combination with [Cu(NCMe)4]BF4 to 
catalyze diastereo- and enantioselective propargylic substitution reac-
tion of propargylic esters or carbonates with nitroacetates to afford 
propargylic alkylated products containing an α-quaternary α-amino 
acid substituent at the propargylic position (Fig. 27a) [127]. 

Combination of CuI and (S)-iBu-pybox (L3u) was employed by K. 
Zhang and co-workers for enantioselective propargylation of 2-oxi-
ndole-3-carboxylate esters (Fig. 27b) [128]. On the other hand, 

combination of [Cu(NCMe)4]PF6, L3u, and (S,S)-Takemoto urea orga-
nocatalyst ((S,S)-9a) [125] as a set of catalysts was applied by Mu-
kherjee and a co-worker to diastereo- and enantioselective decarbox-
ylative ring-opening propargylic alkylation of cyclic propargylic 
carbamates with α-cyanoacetates to afford acyclic α-propargylic cya-
nocarbonyls (Figure 27c) [129]. Here, (S,S)-9a activates the nucleo-
philicity of α-cyanoacetate through the hydrogen bonding interaction, 
and also controls enantioselectivity to react with the in situ-formed 
Cu–allenylidene complex. Zi and co-workers demonstrated en-
antioselective decarboxylative ring-opening propargylic [3 + 2] annu-
lation of cyclic propargylic 4-methylene carbamates with dienol silyl 

Fig. 29. (a) Cu/Me-Fc-PNN-catalyzed enantioselective propargylic alkylation of propargylic esters with enamines, (b) Cu/Me-Fc-PNN-catalyzed diastereo- and 
enantioselective propargylation of oxindoles. (c) Cu/Me-Fc-PNN-catalyzed regio- and enantioselective decarboxylative intramolecular propargylic alkylation of enol 
carbonates. (d) Cu/Me-PNN-catalyzed diastereo- and enantioselective propargylic alkylation of propargylic esters with cyclic enamines. 
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ethers to afford cycloheptanoids by using the combination of CuOTf and 
(S)-3,5-tBu2C6H3-pybox (L3v) as a pair of catalysts (Fig. 27d) [130]. 

A C2-symmetric chiral 2,2′-cyclopropylidene-bridged bis(oxazoline) 
ligand (S)-Ph-cybox (L1b) [55] has been recently applied as a chiral 
ligand by Yuan and co-workers together with Cu(acac)2 to regio- and 
enantioselective decarboxylative ring-opening propargylation of 3- 
amino oxindoles to afford the desired alkylated products bearing two 
vicinal quaternary stereogenic C centers (Fig. 28a) [131]. 

Another C2-symmetric chiral 1,1-dimethylmethylene-bridged bi-
soxazoline ligand (3aS,8aR)-Inda-Me2box (L9a) [55] was also ex-
amined by Song and co-workers in combination with [Cu(NCMe)4]PF6 

and a cinchona urea-derived organocatalyst (9b) [119] to catalyze 
enantioselective decarboxylative ring-opening [3 + 2] annulation of 
cyclic propargylic carbonates (or carbamate) with malononitrile to af-
ford 2-amino-3-cyano-dihydrofurans (or pyrrole) bearing a quaternary 
stereogenic C center at the propargylic position (Fig. 28b) [132]. Here, 

9b reacts with malononitrile to activate as a nucleophile as well as to 
control enantioselectivity to react with the in situ-formed Cu–allenyli-
dene complex derived from [Cu(NCMe)4]PF6, L9a, and a cyclic pro-
pargylic carbonate or carbamate via decarboxylative process. 

Chiral pyridine-2,6-bis(imidazoline) (pybim) ligands [66] have been 
also now available for Cu-catalyzed enantioselective propargylic sub-
stitution reactions. For example, Niu and co-workers demonstrated regio- 
and enantioselective propargylic alkylation of propargylic carbonates or 
esters with β-keto esters to afford the alkylated products bearing two 
vicinal quaternary stereogenic C centers by using the combination of [Cu 
(NCMe)4]BF4, (R,R)-Ph2-Me-pybim (L10a), and Mg(OtBu)2 as a set of 
catalysts (Fig. 28c, 2-Ad = 2-adamantyl) [133]. Here, Mg(OtBu)2 is 
bound to β-keto ester moiety to activate its nucleophilicity. Similarly, F.- 
E. Chen and co-workers demonstrated regio- and enantioselective pro-
pargylic alkylation of propargylic carbonates with N-acyl phenylglycine 
N-hydroxyphthalimide esters to afford propargylic alkylated products 

Fig. 30. (a) Cu/Me-Ph-PNN-catalyzed enantioselective decarboxylative intramolecular propargylic alkylation of propargyl β-ketoesters. (b) Cu/Me-Ph-PNN-cata-
lyzed decarboxylative propargylic alkylation of propargylic esters with β-keto acids. (c) Cu/Me-Ph-PNN-catalyzed enantioselective propargylic alkylation of pro-
pargylic esters with 1,3-dicarobnyl compounds. (d) Cu/Me-Ph-PNN-catalyzed diastereo- and enantioselective propargylic alkylation of propargylic esters with cyclic 
enamines. 
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containing an α-quaternary α-amino acid substituent at the propargylic 
position by using the combination of Cu(OTf)2, (R,R)-Ph2-pybim (L10b), 
and LiOtBu as a set of catalysts (Fig. 28d) [134]. 

Several chiral tridentate ketimine P,N,N-type ligands [67] are also 
available as chiral catalysts for Cu-catalyzed enantioselective propargylic 
C–C bond formation. For example, H. Guo and co-workers utilized the 
combination of (Rc,Sp)-Me-Fc-PNN ((Rc,Sp)-L6a) as a pair of catalysts for 
enantioselective propargylic alkylation of propargylic esters with enam-
ines to afford the propargylic alkylated products (Fig. 29a) [135]. Similar 

catalyst pair was used by Hu and a co-worker for diastereo- and en-
antioselective propargylation of oxindoles to afford the desired products 
containing two vicinal quaternary stereogenic C centers (Fig. 29b) [136]. 
Hu and co-workers also demonstrated regio- and enantioselective dec-
arboxylative intramolecular propargylic alkylation of enol carbonates to 
afford the propargylic alkylated products containing an α-quaternary α- 
amino acid substituent at the propargylic position via the alcoholysis of 
intermediary azalactones by using the combination of [Cu(NCMe)4]PF6 

and (Sc,Rp)-L6a as a pair of catalysts (Fig. 29c) [137], whereas L6b ((R)- 

Fig. 31. (a) Cu/Me-Ph-PNN-catalyzed diastereo- and enantioselective propargylic dearomatization of phenol derivatives. (b) Cu/Me-Ph-PNN-catalyzed en-
antioselective Friedel-Crafts propargylic alkylation of phenol derivatives. (c) Cu/Me-Ph-PNN-catalyzed enantioselective vinylogous propargylation of coumarins. (d) 
Cu/Me-Ph-PNN-catalyzed diastereo- and enantioselective propargylic dearomatization of 2-naphthol derivatives. 
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Me-PNN) was utilized in combination with Cu(OAc)2·H2O for diastereo- 
and enantioselective propargylic alkylation of propargylic esters with 
morpholine-derived cyclic enamines (Fig. 29d) [138]. 

Hu and co-workers have utilized (R)-Me-Ph-PNN ((R)-L6c) or (S)- 
L6c for several enantioselective propargylic C–C bond formation  
[139–144]. Enantioselective formation of β-ethynyl ketones was 
achieved by decarboxylative intramolecular propargylic alkylation of 
propargyl β-ketoesters (Fig. 30a) [139] or decarboxylative propargylic 
alkylation of propargylic esters with β-keto acids (Fig. 30b) [140]. 
Enantioselective propargylic alkylation of propargylic esters with 1,3- 
dicarobnyl compounds (Fig. 30c) [141] and diastereo- and en-
antioselective propargylic alkylation of propargylic esters with mor-
pholine-derived cyclic enamines (Fig. 30d) [142] were also achieved. 

Hu and a co-worker used the combination CuOTf·0.5C6H6 and (R)- 
L6c for diastereo- and enantioselective propargylic dearomatization of 
phenol derivatives (Fig. 31a) [143], or the combination of Cu(OTf)2 and 
(S)-L6c for enantioselective Friedel-Crafts propargylic alkylation of 
phenol derivatives (Fig. 31b) [144]. The same catalysts pair was uti-
lized by Waldmann and co-workers for enantioselective vinylogous 
propargylation of coumarins (Fig. 31c) [145], while Singh and co- 
workers demonstrated diastereo- and enantioselective propargylic 
dearomatization of 2-naphthol derivatives (Fig. 31d) [146]. 

Xu and co-workers utilized the combination of Cu(ClO4)2·6H2O and 
L6d ((S)-Me-py-PNN) as a pair of catalysts for enantioselective pro-
pargylic substitution reaction of propargylic esters or carbonates with 
anthorones (Fig. 32a) [147]. Using similar catalyst pairs, regio- and 

Fig. 32. (a) Cu/Me-py-PNN-catalyzed enantioselective propargylic substitution reaction of propargylic esters or carbonates with anthorones. (b) Cu/Me-py-PNN- 
catalyzed regio- and enantioselective vinylogous and bisvinylogous propargylic substitution reaction of propargylic esters or carbonates with silyl ketene acetals. 
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enantioselective vinylogous and bisvinylogous propargylic substitution 
reaction of propargylic esters or carbonates with silyl ketene acetals has 
been also achieved (Fig. 32b) [148]. 

Precursors of NHC ligands [68] was also found to be effective for Cu- 
catalyzed enantioselective propargylic C–N bond formation by Gong 
and co-workers, who reported diastereo- and enantioselective dec-
arboxylative ring-opening [3 + 3] or [4 + 3] annulation of cyclic pro-
pargylic carbonates or cyclic propargylic carbamates with isatin-de-
rived enals using the combination of [Cu(NCMe)4]PF6 and morpholine- 
or pyrrolidine-based triazolium salt, (R)-iPr-C6F5-mor-N3 (L7c) or (R)- 
Bn-pyr-C6F5-N3 (L7d) as a pair of catalysts, respectively, to afford 
spirooxindoles bearing two vicinal quaternary stereogenic C centers 
(Fig. 33a and b) [149]. 

Combination of [Cu(NCMe)4]BF4 and diphenylethylenediamine 
(dpen) bearing bulky sulfonyl substituent (S,S)-2,6- 
(p-tBuC6H4)2C6H3SO2-dpen (L11) was utilized by F.-E. Chen and co- 
workers for diastereo- and enantioselective decarboxylative ring- 
opening [3 + 2] annulation of cyclic propargylic carbonates with 
indanone carboxylates to afford indanone-based spirolactones 
bearing two vicinal quaternary stereogenic C centers (Fig. 34a)  
[150]. 

X. Wang and co-workers, who isolated well-defined dicopper com-
plex 5b (Fig. 16c) [95], also reported Cu-catalysed enantioselective 

propargylic alkylation of propargylic carbonate with 1,3-diketones, or 
enantioselective propargylation of indole (Fig. 34b) [95]. 

3.3. Cu-catalyzed enantioselective propargylic C–O bond formation 

Catalytic propargylic etherification of propargylic esters was first 
achieved in 1994 by using CuCl2·H2O as a catalyst (Fig. 1c) [8], whereas 
catalytic enantioselective propargylic etherification of propargylic es-
ters with alcohols was first achieved in 2015 by Nishibayashi and co- 
workers, who used the combination of CuOTf·0.5H2O and (S)-L3b (Me- 
pybox)as a pair of catalyst (Fig. 35a) [151]. 

On the other hand, Niu and co-workers utilized the combination of 
[Cu(NCMe)4]PF6, (S)-L3b, and dibenzo-1,4-oxaborine-derived borinic 
acid 8 [113] as a set of catalysts for enantioselective propargylic 
etherification of propargylic carbonates with diols (Fig. 35b) [152]. It 
must be noteworthy that this set of catalysts can be applied to re-
gioselective O-propargylation of carbohydrates (Fig. 35c) [153]. For 
example, changing the chiral ligand between (S)-L3b and (R)-Me-pybox 
((R)-L3b) can affect the regioselectivity of O-propargylation of a man-
nose derivative toward the formation of 3-O and 2-O isomers. 

Nishibayashi and co-workers also used the combination of CuOTf·0.5H2O, 
(S)-L3c, (Ph-pybox) and a borinic acid 8 as a set of catalysts for en-
antioselective propargylic etherification of propargylic carbonates with 

Fig. 33. (a) Cu/NHC-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 3] annulation of cyclic propargylic carbonates with isatin-derived 
enals. (b) Cu/NHC-catalyzed diastereo- and enantioselective decarboxylative ring-opening [4 + 3] annulation of cyclic propargylic carbamates with isatin-derived 
enals. 
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benzylic alcohols (Fig. 36a) [154] or enantioselective intramolecular ether-
ification of propargylic esters to afford chiral isochromans (Fig. 36b) [155]. 

Combination of CuTC and L3s (tBu-pybox) was employed by Tang 
and co-workers as a pair of catalysts for enantioselective tri-
fluoromethoxylation of propargylic sulfonates with CF3OTs (Fig. 36c)  
[156]. He and co-workers have also examined the combination of Cu 
(OTf)2·0.5PhMe, (S)-Ph-Br-pybox (L3w), and a borinic acid 8 as a set of 
catalysts for regio- and enantioselective alkynylallylic etherification of 
1,4-enyne bearing a leaving group remote from the alkyne moiety with 
benzyl alcohol to afford alkynylallylic etherified product (Fig. 36d)  
[82]. Niu and co-workers utilized the combination of [Cu(NCMe)4]BF4, 
(R)-AcOCH2-pybox (L3x) as a pair of catalysts for enantioselective 
propargylic etherification of propargylic carbonates with secondary 
aliphatic alcohols. (Fig. 36e) [157]. 

(S)-L6c (Me-Ph-PNN) was utilized by Hu and co-workers in com-
bination with CuOTf·0.5C6H6 for enantioselective propargylic ether-
ification of propargylic esters with phenols (Fig. 37a) [158], or en-
antioselective propargylic etherification of propargylic esters with 
oximes (Fig. 37b) [159]. Similar pair of catalysts was utilized by Singh 

and co-workers for enantioselective propargylic etherification of pro-
pargylic esters with 2-naphthol derivatives (Fig. 37c) [146]. 

X. Wang and co-workers, who isolated well-defined dicopper com-
plex 5a (Fig. 16b) [95], also reported 5a-catalyed enantioselective 
propargylic etherification of propargylic carbonate with 4-bromo-
phenol (Fig. 37d) [95]. 

3.4. Cu-catalyzed enantioselective propargylic C–S bond formation 

Catalytic enantioselective propargylic C–S bond formation was re-
ported by Cordier and co-workers via the intramolecular O-to-S re-
arrangement of propargylic carbamothioate to afford propargylic 
thiocarbamate by using the combination of CuOTf·0.5C6H6 and (R)-L4a 
(BINAP) as a pair of catalysts, although this reaction was reported as a 
preliminary result (Fig. 38a) [160]. 

Enantioselective propargylic C–S bond formation was first reported 
in 2018 by Kleij and co-workers, who employed the combination of Cu 
(OTf)2 and a C2-symmetric chiral 1,1-dimethylmethylene-bridged bi-
soxazoline ligand (R)-Ph-Me2box (L9b) as a pair of catalysts for 

Fig. 34. (a) Cu/dpen-catalyzed diastereo- and enantioselective decarboxylative ring-opening [3 + 2] annulation of cyclic propargylic carbonates with indanone 
carboxylates. (b) Cu-catalyzed enantioselective propargylic alkylation of propargylic carbonate with 1,3-diketones, or enantioselective propargylation of indole. 
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enantioselective decarboxylative propargylic sulfination of cyclic pro-
pargylic carbonate with sodium sulfinate to afford propargylic sulfones 
bearing a quaternary stereogenic C center at the propargylic position 
(Fig. 38b) [161], which was also shown to be obtained by the direct 
propargylic sulfination of propargylic carbonates with sodium benze-
nesulfinate (Fig. 38c) [162], 

More recently, X. Zhang and co-workers have succeeded in en-
antioselective propargylic trifluoromethylthiolation of secondary 
propargyl sulfonates with AgSCF3 by using the combination of Cu 
(OTf)2 and (S)-PhCH2CH2-pybox (L3y) as a pair of catalysts 
(Fig. 38d) [163]. 

Enantioselective propargylic O-to-S rearrangement of propargylic 
xanthates has been also reported very recently by Cheng and co- 
workers by using the combination of CuTC and (Sc,Sp)-iPr-phosferrox 
(L12) as a pair of catalysts (Fig. 38e) [164]. 

4. Summary and perspectives 

Three decades have passed since the first reports of catalytic pro-
pargylic substitution reactions of propargylic compounds [6–8], and al-
most two decades have passed since the first reports of enantioselective 
propargylic substitution reactions of propargylic compounds [15,16]. 

Fig. 35. (a) Cu/Me-pybox-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. (b) Cu/Me-pybox- and borinic acid-catalyzed 
(regio- and) enantioselective propargylic etherification of propargylic carbonates with diols (c) Cu/Me-pybox- and borinic acid-catalyzed regio- and enantioselective 
O-propargylation of carbohydrate. 
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Fig. 36. (a) Cu/Ph-pybox- and borinic acid-catalyzed enantioselective propargylic etherification of propargylic carbonates with benzylic alcohols. (b) Cu/Ph-pybox- 
catalyzed enantioselective intramolecular etherification of propargylic esters. (c) Cu/tBu-pybox-catalyzed enantioselective trifluoromethoxylation of propargylic 
sulfonates with CF3OTs. (d) Cu/Ph-Br-pybox- and borinic acid-catalyzed regio- and enantioselective alkynylallylic etherification of 1,4-enyne with benzyl alcohol. (e) 
Cu/AcOCH2-pybox-catalyzed enantioselective propargylic etherification of propargylic carbonates with secondary aliphatic alcohols. 
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Here, the formation of allenylidene complexes has played key roles not 
only for accelerating catalyses by increasing electrophilicity at the pro-
pargylic position of the propargylic compounds but also for asymmetric 
induction. Since then, enantioselective propargylic substitution reactions 
via the formation of allenylidene complexes have been developed  
[17–20], including enantioselective C–C bond formation [15,16,96], C–N 
bond formation [60,62], C–O bond formation [151], C–S bond formation  
[160,161], and C–P bond formation [58] at the propargylic position. In 
addition, various enantioselective reactions containing functionalization 
or tandem cyclization of alkyne moiety have been developed [17,18,20], 
which are not summarized in this review. 

On the other hand, transition metals that can furnish en-
antioselective catalytic propargylic substitution reactions via the 

formation of allenylidene complexes have been still limited to Ru and 
Cu [17–20], although many other transition metals and main group 
catalysts including organocatalysts have been shown to catalyze pro-
pargylic substitution reactions [9–13]. 

However, L. Zhang and co-workers have very recently reported Au- 
catalyzed propargylic amination of propargylic compounds by using 
alkynyl benziodoxoles as propargylic substrates. In this reaction, well- 
defined Au complexes bearing (R)-WangPhos (L13) as an auxiliary li-
gand [AuCl(L13)] (10a) and [Au(NTf2)(L13)] (10b) have been pre-
pared as catalysts (Fig. 39a, Ad = 1-adamantyl) [165,166]. As a pre-
liminary result, enantioselective propargylic amination of alkynyl 
benziodoxole has been also examined, although its enantioselectivity 
has been reported to be poor (Fig. 39b) [166]. Anyway, allenylidene 

Fig. 37. (a) Cu/Me-Ph-PNN-catalyzed enantioselective propargylic etherification of propargylic esters with phenols. (b) Cu/Me-Ph-PNN-catalyzed enantioselective 
propargylic etherification of propargylic esters with oximes. (c) Cu/Me-Ph-PNN-catalyzed enantioselective propargylic etherification of propargylic esters with 2- 
naphthol derivatives. (d) Cu-catalyzed enantioselective propargylic etherification of propargylic carbonate with phenol derivative. 
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Fig. 38. (a) Preliminary result for Cu/BINAP-catalyzed enantioselective intramolecular O-to-S rearrangement of propargylic carbamothioate. (b) Cu/Me2box-cat-
alyzed enantioselective decarboxylative propargylic sulfination of cyclic propargylic carbonate with sodium sulfinate. (c) Cu/Me2box-catalyzed enantioselective 
propargylic sulfination of propargylic carbonates with sodium sulfinate. (d) Cu/PhCH2CH2-pybox-catalyzed enantioselective trifluoromethylthiolation of secondary 
propargylic sulfonates with AgSCF3. (e) Cu/phosferrox-catalyzed enantioselective intramolecular O-to-S rearrangement of propargylic xanthates . 

Y. Tanabe and Y. Nishibayashi                                                                                                                                           Coordination Chemistry Research 1 (2024) 100003 

39 



complexes have been isolated not only for Au [65] but for many other 
transition metals other than Ru or Cu [21]. Thus, further expansion of 
catalytic systems that can furnish enantioselective propargylic sub-
stitution reactions is expected. 
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