
ORGANIC CHEMISTRY
FRONTIERS

RESEARCH ARTICLE

Cite this: DOI: 10.1039/d2qo00667g

Received 25th April 2022,
Accepted 1st June 2022

DOI: 10.1039/d2qo00667g

rsc.li/frontiers-organic

Rh(III)-Catalyzed C–C coupling of unactivated
C(sp3)–H bonds with iodonium ylides for accessing
all-carbon quaternary centers†

Pengfei Xie, Huixing Gao, Xingwei Li, Yuqin Jiang* and Bingxian Liu *

Rhodium-catalyzed inert C(sp3)–H activation/carbene insertion, which enables the construction of all-

carbon quaternary centers, has been realized. Iodonium ylides are used as C1 synthons for efficient C–C

bond formation with PhI being the only by-product. A rhodacycle has been synthesized and proved to be

the active intermediate.

Strategies that achieve C–C bond formation from inert C–H
bonds are favored by organic chemists due to their advantages
of atom- and step-economy, wide source of substrates, accessi-
bility of complex molecules and convenient late-stage
functionalization. With the development of transition metal-
catalyzed C–H functionalization, the coupling reaction of C–H
bonds with carbon synthons to form C–C bonds has been
widely applied in the total synthesis of natural products, late-
stage functionalization of drug-related frameworks and syn-
thesis of material molecules.1 Among the carbon synthon
coupling components, carbene precursors have been exten-
sively studied, which can undergo C–H bond carbenoid inser-
tion.2 Compared to the C–C coupling of C(sp2)–H bonds with
carbenes by transition metal catalysis, the studies of C(sp3)–H
bond carbene insertion are still limited to the outer-sphere
pathway.2,3 Only a few examples of inner-sphere C(sp3)–H
bond carbene insertion reactions have been reported
(Scheme 1). For example, the C–C couplings of a benzylic C–H
bond with diazo compounds or iodonium ylides have been
developed by Zhou,4 Shi,5 Samanta6 and our group.7 Martin’s
group realized oxidative addition-initiated C(sp3)–H carbene
insertion/reductive elimination to access all-carbon quaternary
centers.8 Lautens’s group9 and Yan’s group10 independently
reported C(sp3)–H carbene insertion/C–C cleavage to access
alkenes. Cramer’s group achieved the ring expansion of cyclo-
propanes using diazo compounds as carbene precursors.11

Despite the advances, the inner-sphere coupling of an unacti-

vated C(sp3)–H bond with non-diazo carbene precursors
remains a challenge.

Iodonium ylide is a widely studied carbene precursor,2f,12

and has been applied to RhIII-catalyzed C–H functionalization
by our group.7 It acted as a highly active coupling partner in
C(sp2)–H carbene insertion/annulation reactions.13 We
reasoned that the high reactivity of iodonium ylide might be
matched by the challenging inert C(sp3)–H activation. Thus,
we herein report an unactivated methyl C–H activation/

Scheme 1 C–C bond formation via inner-sphere C(sp3)–H bond
carbene insertion.
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carbene insertion reaction, leading to the construction of all-
carbon quaternary centers.14

By treating a pyridine derivative containing gem-dimethyl
groups (1a) with iodonium ylide 2a in the presence of a
rhodium(III) catalyst at 100 °C in HFIP, the C–C bond coupling
product with an all-carbon quaternary center was obtained in
a good yield (Table 1, entry 1, 88%). The fluctuation of the
reaction temperature slightly affected the reaction efficiency
and products were obtained in 78% and 79% yields (entries 2
and 3). The changes of the silver salt from AgSbF6 to AgOAc,
AgPF6, or AgBF4 all gave negative results (entries 4–6). Other
carboxylic acid additives such as AdCOOH and PivOH were
applicable with slightly lower reaction efficiency (entries 7 and
8, 80% and 78% yields). DCE or MeOH was not the optimal
solvent for the reaction (entries 9 and 10). Control experiments
revealed that both [Cp*RhCl2]2 and AgSbF6 are necessary for
the reaction system (entries 11 and 12). The desired product
was isolated with decreased yields in the absence of NaOAc or
K2CO3 (entries 13 and 14). The in situ generated 2a only gave
traces of the product under the standard conditions (entry 15).
Addition of K3PO4 enhanced the reaction efficiency and
afforded the product in a moderate yield (entry 16). No product
was detected when the corresponding diazo compound15 was
used instead of iodonium ylide, indicating the high reactivity of
iodonium ylide in the coupling system (entry 17).

With the standard conditions in hand, the scope of pyri-
dine derivatives containing gem-dimethyl groups was screened

(Scheme 2). Substitutions at the 4-position of the phenyl ring
had little effect on the reaction efficiency (3b–3f, 70–80%). The
substrates bearing halogen, alkyl, trifluoromethyl and other
functional groups all reacted with iodonium ylide 2a smoothly,
giving the products in moderate to high yields (3g–3m,
56–87%). The occupation of the ortho-position of the phenyl
ring by a Br or CF3 group led to the desired product with lower
yields, which may be caused by the steric effects (3i and 3j).
The substrates containing a naphthyl ring or disubstituted
phenyl ring gave the product with moderate yields (3n and 3o,
68%). 2-tert-Amylpyridine, 2-tert-butylpyridine and 2-isopropyl-
pyridine were all applicable to the reaction system affording
the corresponding products (3p–3r, 30–83%). The reaction
could also occur when quinoline was used as the directing
group (3s and 3t). The scope of iodonium ylides was then
investigated, where cyclic iodonium ylides were found to be

Table 1 Optimization of the reaction conditions

Entry Verifications of the optimal conditionsa Yield/%

1 No changes 88
2 80 °C 78
3 110 °C 79
4 AgOAc instead of AgSbF6 48
5 AgPF6 instead of AgSbF6 49
6 AgBF4 instead of AgSbF6 Trace
7 AdCOOH instead of 2,2-dimethylbutyric acid 80
8 PivOH instead of 2,2-dimethylbutyric acid 78
9 DCE Trace
10 MeOH n.d.
11 Without [Cp*RhCl2]2 n.d.
12 Without AgSbF6 n.d.
13 Without NaOAc 47
14 Without K2CO3 46
15b In situ generated 2a was used Trace
16b,c K3PO4 (0.15 mmol) was added 58
17 2-Diazocyclohexane-1,3-dione instead of 2a n.d.

a Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), [Cp*RhCl2]2
(4 mol%), AgSbF6 (16 mol%), NaOAc (0.1 mmol), 2,2-dimethylbutyric
acid (0.1 mmol), K2CO3 (0.1 mmol), HFIP (0.5 mL), 100 °C, 12 h, under
Ar, n.d. = not detected, HFIP = hexafluoroisopropanol. b 1,3-
Cyclohexanedione (0.15 mmol) and PhI(OAc)2 (0.15 mmol) instead of
2a. c In situ generated 2a, K3PO4 (0.15 mmol).

Scheme 2 Scopes of the substrates. Standard conditions, isolated
yields.
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tolerated (Scheme 2). Noncyclic iodonium ylides from dicarbo-
nyl compounds all gave negative results. Cyclohexa-2,5-
dienone iodonium ylides with a methyl or phenyl group pro-
vided the products with good yields (3u–3w). Iodonium ylides
from 4-hydroxycoumarin were found to be tolerated, affording
coumarin derivatives with moderate yields (3x–3ab, 35–67%).

The scale-up synthesis and derivatization of product 3a
were conducted to showcase the practicability of the C–C coup-
ling reaction. The product was isolated with a slightly
decreased yield at the 3 mmol scale (Scheme 3a). The chlori-
nation reaction with oxalyl chloride gave compound 4 quanti-
tatively (Scheme 3b). The hydroxyl group can be transformed
into a methoxy group when compound 3a was treated with
TMSCHN2 (Scheme 3c). Oxidation of compound 3a by Cu
(ClO4)2 and O2 led to product 6 by the cleavage of C–C bonds
(Scheme 3d).

To gain insight into the mechanism of the catalytic system,
a rhodacycle from 1p and [Cp*RhCl2]2 was synthesized accord-
ing to the literature report (Scheme 4a).16 When the [Rh-Py]
complex was used as the catalyst, 1p reacted with 2a to afford
the corresponding product with 72% yield (Scheme 4b). The

stoichiometric reaction of the rhodacycle with 2a also led to
product 3p with a moderate yield (Scheme 4c). The results
revealed that the rhodacycle may be one of the key intermedi-
ates of the cyclic process. Using HFIP-d2 as the reaction
solvent, H/D exchange at the methyl groups with adamantoic
acid-d1 was conducted. No deuteration was detected at either
the methyl or methylene position in the corresponding
product 3a, indicating the irreversibility of the methyl C–H
activation process (Scheme 4d).

According to the results and literature report,4,7,13 a cata-
lytic cycle was proposed as shown in Scheme 5. Pyridine-
assisted methyl C–H activation by the active rhodium catalyst
gives rhodacycle A, which can react with 2a to lead to inter-
mediate B by leaving of PhI. Intermediate B can undergo
migratory insertion to afford the six-membered rhodacycle C.
Finally, protonation of rhodacycle C gives the desired product
3a with the regeneration of the active rhodium catalyst.

Conclusions

In summary, we have realized the inner-sphere C(sp3)–H
carbene insertion reaction, leading to C–C coupling products
with all-carbon quaternary centers. A rhodacycle was syn-
thesized and proved to be the active intermediate of the reac-
tion system, revealing the inner-sphere pathway of the carbene
insertion process. The cyclic iodonium ylides exhibited high
reactivity for the coupling reaction. The reaction can proceed
smoothly with wide substrate scopes and the useful derivatiza-
tion of the product can be easily conducted.
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Scheme 3 Scale-up synthesis and derivatization of product 3a.

Scheme 4 Mechanism studies.

Scheme 5 Proposed catalytic cycle.
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