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COVER    The oxidative C−H/C−H cross-coupling between two heteroarenes has attracted much 
attention in recent years. Various natural products, pharmaceuticals and organic functional materi-
als can be rapidly synthesized by this powerful strategy. The C−H activation strategy has many ad-
vantages over traditional coupling reactions, such as atom economy, low cost and synthetic simplic-
ity. However, there are still some problems with transition metal-catalyzed C−H/C−H cross-   
coupling. The major one is the use of stoichiometric amounts of metal oxidants, which limits its 
practicability. In this work, a palladium/copper-cocatalyzed oxidative C−H/C−H cross-coupling 
between two heteroarenes by using molecular oxygen as an oxidant has been developed to construct 
biheteroaryl motifs. As oxygen is a green and cheap oxidant, the current catalytic system would be 
emerged as a significant tool for constructing unsymmetrical biheteroaryls (see the article by Yang 
Shi, Zhen Wang, Yangyang Cheng, Jingbo Lan, Zhijie She & Jingsong You on page 12921296). 
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Rhodium(III)-catalyzed coupling between ketoximes and alkynes via C–H activation and annulation typically followed the 
[4+2] selectivity to afford isoquinolines. By designing alkynes bearing a highly electron-withdrawing group and under sub-
strate control, we have successfully switched the selectivity of the coupling between oximes and alkynes to the alternative  
[3+2] annulation, leading to the efficient synthesis of indenamines. This process features good regioselectivity for both sub-
strates, high efficiency, broad substrate scope, and excellent functional group tolerance. 

rhodium(III), C–H activation, annulation, oxime, alkyne 

 

 

 

1  Introduction 

Substituted indenes are a valuable structural motif in many 
biologically active molecules [1], functional materials [2], 
and natural products [3]. Thus, the synthesis of compounds 
with an indene scaffold has attracted increasing attention 
over the past decades. In particular, transition-metal-cataly- 
zed direct functionalization of C–H bonds of arenes has 
emerged as a powerful tool for the construction of a broad 
variety of such building blocks [4]. From a step- and atom- 
economic point of view, the synthesis via a C–H activation 
pathway would be a more straightforward and attractive 
alternative to the traditional functional group transformation 
chemistry that heavily relied on pre-functionalized arenes. 

In 2005 and 2006, Takai et al. [5] reported the synthesis 
of indenamines and derivatives via C–H activation of imines 
followed by functionalization with alkynes when catalyzed 
by [ReBr(CO)3(thf)]2. In this system, the polar Re–C bond 
generated via C–H activation acts as an intramolecular nu-
cleophile. Later in 2010, Zhao et al. [6] reported the cou-
pling of protic benzophenone imines with alkynes to give 

primary indenamines, and an asymmetric variant was sub-
sequently developed by Cramer et al. [7]. In 2012, our 
group [8] reported Ru(II)- and sulfonamide-catalyzed cou-
pling of N-sulfonyl imines with alkynes to furnish the same 
type of product via C–H activation. This strategy of C–H 
activation and [3+2] annulations has been further developed 
by others for the synthesis of other indenamides using 
Rh(III), Ru(II) and Mn catalysts [9]. In fact, this annulative 
strategy is not limited to indenamines, and the related syn-
theses of indenols and indenones have been achieved by Glo-
rius et al. [10], Cheng et al. [11], Shi et al. [12], our group 
[13], and others [14]. In all these systems, the imine, ketone, 
and amide functionality play a bifunctional role: the nucle-
ophilic heteroatom offers chelation assistance, while the 
electrophilic C=E bond is then attacked by the resultant 
M–C bond (M=Ru, Ir, Rh, and Co) [15].  

As special imines, oximes and derivatives are well- 
known arenes that can undergo Ru(II)- and Rh(III)-catalyzed 
redox-neutral [4+2] coupling with alkynes (Scheme 1), 
leading to the synthesis of isoquinolines or pyridines [16]. 

In these systems, the oxime group functions as an oxidizing 
directing group that effects C–H activation under mild con-
ditions with high efficiency and regioselectivity. In previous  
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Scheme 1  [4+2] versus [3+2] coupling between imines and alkynes. 

studies, the coupling of oxime derivatives with alkynes al-
most invariably afforded the [4+2] coupling product, as a 
result of the oxidizing potential of the N–O bond herein. 
However, it still remains a question whether the alternative 
[3+2] coupling selectivity can be reached for such specific 
imines. We reasoned that a highly polar M–C bond should 
favor the [3+2] coupling. To increase the polarity of the 
M+–C bond, the installation of a highly electron-    
withdrawing group to the metal-bond carbon (M–C(EWG)) 
should fulfill this task because the M–C bond is more ionic 
and more polarized. Therefore, acetylenic triflones could be 
an appropriate choice of such alkyne substrates. 

2  Experimental 

All chemicals which were obtained from commercial sup-
pliers were used as received. All reactions were carried out 
using Schlenk techniques or in a nitrogen-filled dry box.1H 
and 13C NMR spectra were recorded using CDCl3 as a sol-
vent on a Bruker 400 MHz or 500 MHz NMR spectrometer 
(Switzerland). The chemical shift is given in dimensionless 
δ values and is referenced relative to TMS in 1H and 13C 
NMR spectroscopy. High resolution mass spectra were ob-
tained on an Agilent Q-TOF 6540 (USA). Column chroma-
tography was performed on silica gel (200–300 mesh) with 
freshly distilled ethyl acetate and petroleum ether (bp 60– 
90 °C). 

O-methyl oximes (0.20 mmol), trifluoromethane-   
sulfonyl-phenylacetylene (0.22 mmol), [Cp*Rh(MeCN)3]- 
[SbF6]2 (5 mol %, 8.3 mg) and 1,2-dichloroethane (DCE, 
2.5 mL ) were charged into a schlenk tube under nitrogen. 
The mixture was heated in an oil bath at 110 °C for 6 h. 
Afterwards, the solvent was removed under a reduced pres-
sure to afford a crude product, which was further purified 
by silica gel column chromatography with petroleum 
ether/ethyl acetate eluents. 

3  Results and discussion 

We initiated our studies with the coupling of O-methyl ox-

ime (1a) with trifluoromethanesulfonyl phenylacetylene (2a) 
catalyzed by [RhCp*Cl2]2 (4 mol %) in the presence of 
AgSbF6 (16 mol%) in DCE, from which the desired product 
3aa was isolated in 52% yield (Table 1, Entry 1). Product 
(3aa) was fully characterized as an indenamine, including 
by X-ray crystallography for one of its analogues (3ea). To 
our delight, the yield of (3aa) was augmented to 71% when 
the catalyst was switched to [RhCp*(MeCN)3](SbF6)2 (En-
try 2). Further screening of solvents gave DCE as the best 
choice, while trace or no product was detected in other sol-
vents such as toluene, n-pentane, DCM, THF, MeCN, ace-
tone, or NMP (Entries 4–11). Increasing the reaction tem-
perature to 110 °C gave rise to a higher yield (Entry 12). 
The metal catalyst proved necessary because no desired 
product was observed when it was omitted (Entry 13). 

With the optimal conditions in hand, we next examined 
the scope and generality of this coupling reaction (Scheme 
2). Various para substituted O-methyl oximes readily cou-
pled with 2a under the standard conditions to afford the 
annulations products in 42%–85% yields (Scheme 2, 
3ba−3la). Electron-withdrawing groups and halogen groups 
at the para position of the benzene ring are also tolerated 
(70%–85%, 3ba−3ia), although a nitro group and trifluro-
methanesulfonyl group afforded lower coupling efficiency 
(57% for 3da and 55% for 3ea). In contrast, donating 
groups such as 4-methoxy-substituted oxime gave a dimin-
ished yield (42% for 3la), so did a para tert-butyl substitut-
ed oxime (46% for 3ka). Gratifyingly, 4-methyl oxime cou-
pled to give 3ja in 70% isolated yield. Interestingly, the 
regioselectivity of meta-substituted O-methyl oximes varies  

Table 1  Optimization studies a) 

 
Entry Solvent T (oC) Time (h) Yield (%) b) 

 1 c) DCE 90 6 52 
2 DCE 90 6 71 
3 DCE 90 12 68 
4 DCM 90 6 18 
5 toluene 90 6 NR 
6 n-pentane 90 6 NR 
7 THF 90 6 trace 
8 t-AmOH 90 6 trace 
9 NMP 90 6 NR 
10 CH3CN 90 6 NR 
11 acetone 90 6 trace 
12 DCE 110 6 84 

  13 d) DCE 110 6 NR 
a) Reactions were carried out by using [RhCp*(MeCN)3](SbF6)2 (5 mol%), 

1a (0.2 mmol), and 2a (0.22 mmol) in a solvent (2 mL) at 110 °C for 6 h; b) 
isolated yield after column chromatography; c) reactions were carried out 
by using [RhCp*Cl2]2 (4 mol %), AgSbF6 (16 mol %), 1a (0.2 mmol), and 
2a (0.22 mmol) in DCE at 110 °C for 6 h; d) no catalyst was used. 
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Scheme 2  Scope of the oxime substrates. Reaction conditions: [RhCp*(MeCN)3](SbF6)2 (5 mol %), 1a (0.2 mmol), and 2a (0.22 mmol) in DCE (2 mL) at 
110 °C for 6 h. Isolated yield after column chromatography.  

with the steric bulkiness of the substituent. For a relatively 
bulky group, the C–H functionalization occurs at the less 
hindered ortho position (3ma, 3na, 3oa, and 3qa). In con-
trast, the coupling of meta-F substituted O-methyl oximes 
occurred exclusively at the more hindered ortho position 
(3pa) because the coordination effect of the fluoro group 
may dominate its minimal steric hindrance [17]. The steric 
hindrance of the ortho substituent was also examined (3ra 
and 3sa), and the coupling turned out to be sensitive to ste-
ric hindrance. And the reaction yields were comparably 
high when the carbon chain in the imine moiety was ex-
tended (3ta and 3ua). 

The scope of alkynes bearing other electron-withdrawing 
groups (EWGs) was then explored. As given in Scheme 3, 
variation of the alkyne terminus in the triflone afforded the 
annulation product in 47%–82% yield, and the alkyne was 
not limited to a phenylacetylene (3ad). In addition, when 
the EWG in the alkyne was switched to a weaker one such 
as an ester, the yields of products (3af and 3ag) decreased 
significantly (36% and 38%, respectively). Thus, our results 
clearly show that a more polar Rh–C bond correlates with a 
higher yield.  

During our extension of the scope of the oxime substrate,  

 

Scheme 3  Scope of the alkyne substrates. Reaction conditions: 
[RhCp*(MeCN)3](SbF6)2 (5 mol %), 1a (0.2 mmol), and alkyne (0.22 
mmol) in DCE (2 mL) at 110 °C for 6 h. Isolated yield after column chro-
matography. 

we found that the coupling of oximes 1v and 1w did not 
lead to the expected [3+2] product under the standard con-
ditions. Instead, the corresponding [4+2] product, isoquino-
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line 3va and 3wa, were isolated in good yields (Eqs. (1, 2)), 
where stereo-electronic effects of substrates may play an 
important role in this coupling reaction. 

  

(1)

 

  

(2)

 

To briefly probe the mechanism of this reaction, kinetic 
isotope effect has been measured in the competition be-
tween 1a and 1a-d5 in their coupling with 2a in equimolar 
ratio under a low conversion (Eq. (3)). A value of kH/kD=2.6 
was obtained on the basis of 1H NMR analysis. This moder-
ate value suggests that the C–H activation process is proba-
bly involved in the rate-determining step. 

 

(3)

 

A plausible mechanism is given in Scheme 4 on the basis 
of literature precedents [6,9a,9f,9h]. Cyclorhodation of ox-
ime 1a affords intermediate A which subsequently coordi-
nates with alkyne 2a and is followed by regio-selective mi-
gratory insertion to rhodacycle C. Nucleophilic attack of the 
Rh–C bond at the imine group gives intermediate D. The 
final product was released and the catalytic cycle was com-
pleted when an incoming oxime undergoes coordination and 
cyclometalation likely via -complex-assisted metathesis 
mechanism [17]. Alternatively, intermediate C could also  

 

Scheme 4  Proposed catalytic cycle. 

lead to an isoquinoline product under a mechanism reported 
in previous literature [16f,18].  

4  Conclusions  

Rh(III)-catalyzed C–H activation of O-methyl oximes has 
been developed, and subsequent functionalization with tri-
fluoromethanesulfonyl-phenylacetylenes leads to efficient 
synthesis of functionalized indenamines via a formal [3+2] 
cyclization process. This process features high efficiency, 
broad substrate scope, and excellent functional group toler-
ance. The selectivity stays in contrast to the commonly ob-
served [4+2] coupling for oximes under rhodium and ruthe-
nium catalysis. This coupling reaction, which extended the 
scope and applicability of Rh(III)-catalyzed C–H activa-
tion/coupling reactions of arenes, may be applied to the 
synthesis of complex structures. 
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