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ABSTRACT: Rh(III)-catalyzed direct oxidative C−H/C−H cross-
coupling between N-pyrimidylindoles and β-ketoesters is presented.
Easily available β-ketoesters are used as an alkylating agent for the
facile construction of all-carbon quaternary centers under mild
conditions. The ester group in the product can undergo
decarboxylation or decarboxylative amination.

Carbon−carbon bonds are ubiquitous in nearly every
organic material, and increasing attention has been

devoted to the selective construction of carbon−carbon
bonds starting from readily available reagents. In the past
decades, owing to the abundance of arenes, metal-catalyzed
C(aryl)−H bond functionalization as an atom-economic
synthetic method has become a powerful strategy for C−C
bond formation.1 Among the various transition metals,
rhodium(III) cyclopentadienyl complexes are outstanding
catalysts for activation of a broad series of arenes under
chelation assistance.2 Significant development has been made
in the field of Rh(III)-catalyzed direct alkylation of C−H
bonds. In early studies (Scheme 1a), unsaturated C�C,3 C�
O,4 and C�N5 bonds have been predominantly used as a
coupling reagent toward C−H alkylation reactions with
outstanding functional group compatibility. Meanwhile,
diazo,6 hydrazone,7 sulfoxonium ylide,8 and other carbene
precursors9 have also been demonstrated as highly reactive
coupling reagents in arene C−H alkylation, allowing
introduction of both primary and secondary alkyl groups.
Alternatively, our group, Cramer, Glorius, Wang, and others
realized Rh(III)-catalyzed C−H alkylation with strained or
reactive rings as alkylating reagents.10,11 In addition, we and
Wang have developed rhodium-catalyzed oxidative C−H
alkylation of arenes using organoboron reagents.12 Never-
theless, these systems are predominantly limited to the
introduction of primary and secondary alkyl groups.

All-carbon quaternary centers are commonly found in many
natural products and drug intermediates.13 It remains a
daunting challenge to access all-carbon quaternary centers via
metal catalysis due to the steric effects when connecting two
bulky groups. Previous studies typically relied on strategies of
substrate activation and ligand promotion, such as taking
advantage of reactive palladium enolates and Rh(III) carbene
species to facilitate C−C coupling. In terms of C−H bond
activation (Scheme 1b), synthetic methods have been limited
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Scheme 1. Rh(III)-Catalyzed C−H Alkylation Reaction
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to annulation reactions upon participation of a directing group,
where migratory insertion typically serves as a key step to
introduce an alkyl group. Thus, by following this strategy,
arenes bearing a heteroatom directing group reacted with
unsaturated reagents such as alkynes and alkenes to give
various spirocyclic skeletons (Scheme 1b).14 Additionally,
utilizing the nucleophilicity of directing groups to achieve
dearomative oxidative annulation is also an effective method.15

Moreover, Rh(III)-catalyzed [4 + 1]16 and [5 + 1]17

annulation systems between arenes and diazo compounds,
difluoroalkynes, allenes, or alkenes have been realized (Scheme
1b). However, Rh(III) catalyzed C−H functionalization to
form quaternary carbon centers is mainly restricted to
annulation reactions. Thus, it is necessary to exploit new
coupling patterns to fulfill the demand of all-carbon quaternary
center synthesis. Our approach was to effect C−C coupling via
direct C−H alkylation using a nucleophilic methine that
involves challenging C−C reductive elimination, where β-
ketoesters have been designed as the alkylating reagent.18 We
now report Rh(III)-catalyzed oxidative C(sp2)−H/C(sp3)−H
cross-coupling of N-pyrimidylindole with β-ketoesters for the
efficient construction of all-carbon quaternary centers (Scheme
1c).

To ensure the reactivity of β-ketoesters, cyclic ketoesters
were our first choice. Our initial studies were performed using
N-pyrimidylindole 1a and β-ketoester 2a in the presence of
[Cp*RhCl2]2 (4 mol %), AgSbF6 (16 mol %), AgOAc (3.0
equiv), and AcOH (1.0 equiv) at 70 °C (Table 1). Fortunately,
the desired product 4a was obtained in 59% yield, and the yield
was slightly affected by the silver carboxylate additive or acid
additive (entrie 1−3). AgF has been identified as the optimal
oxidant, while other oxidants ((Cu(OAc)2, Ag2O, and

Ag2CO3) only led to lower coupling efficiency (entries 5−8).
Screening of the solvent gave DCE as the optimal medium
(entries 8−11). PivOH proved to be the optimal acid;
switching to other acids such as PhCOOH, MesCOOH, and
1-AdCOOH only led to a lower coupling efficiency (entries
12−15). By contrast, reducing or increasing the reaction
temperature can lead to poorer results (entries 16 and 17).

Under the optimal reaction conditions, we then investigated
the substrate scope of C(sp2)−H/C(sp3)−H coupling
(Scheme 2). First, the scope of N-pyrimidylindoles was

explored; indole rings with electron donating, electron
withdrawing, and halogen groups were completely compatible
(3a−3w). Furthermore, 5,6-disubstituted indole (3x) was also
a suitable substrate. To our delight, a pyrrole substrate was
amenable to this transformation, delivering desired product 3y
in 58% yield. Notably, extension of the directing group to an
N-pyridyl ring resulted in somewhat lower efficiency (3z),
indicating that the directing group has a direct impact on
reaction efficiency.

The coupling of N-pyrimidylindole 1a with various cyclic β-
ketoesters 2 was next examined (Scheme 3). β-Keto esters

Table 1. Optimization Studiesa

entry solvent oxidant acid yieldb (%)

1 DCE AgOAc AcOH 59
2 DCE AgOAc − 50
3 DCE AgOPiv PivOH 56
4 DCE Cu(OAc)2 AcOH trace
5 DCE Ag2O AcOH 48
6 DCE Ag2CO3 AcOH 60
7 DCE AgF AcOH 64
8 CHCl3 AgF AcOH 24
9 TCE AgF AcOH 33
10 PhCl AgF AcOH 39
11 TFE AgF AcOH 53
12 DCE AgF PhCO2H 42
13 DCE AgF MesCO2H 50
14 DCE AgF 1-AdCO2H 72
15 DCE AgF PivOH 78
16c DCE AgF PivOH 58
17d DCE AgF PivOH 70

aReaction conditions: 1a (0.1 mmol), 2a (0.05 mmol), [RhCp*Cl2]2
(4 mol %), AgSbF6 (16 mol %), oxidant (3.0 equiv), acid (1.0 equiv),
solvent (0.5 mL), 70 °C, under N2 for 12 h. bIsolated yield. c50 °C.
d90 °C.

Scheme 2. Scope of Indoles in C(sp2)−H/C(sp2)−H
Coupling Reactiona,b

aReactions conditions: β-indanone ester 1a (0.2 mmol), indole 2 (0.1
mmol), [RhCp*Cl2]2 (4 mol %), AgSbF6 (16 mol %), AgF (3.0
equiv) and PivOH (1.0 equiv) at 70 °C in DCE (1.0 mL) under N2
for 12 h. bIsolated yields.
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derived from 6-substituted 1-indenone with various functional
groups were suitable for coupling, and the corresponding
products 4b−e were isolated in 60−70% yields. Meanwhile, 5-
substituted 1-indanone derived β-ketoesters also performed
well, and the corresponding products were isolated in
moderate to good yields (4f−i). Of note, dimethoxy-
substituted β-ketoester 1j reatcted to give 4j in 57% yield.
Diverse ester groups were also tolerated in this C(sp2)−H/
C(sp3)−H coupling reaction, providing the corresponding
products in 45%−60% yields (4k−m).

To our delight, the β-keto esters derived from cyclo-
pentanone were also a viable substrate for this transformation,
affording the corresponding product 4n in moderate yield. It is
worth noting that six-membered β-ketoesters and an acyclic β-
ketoester were also applicable, furnishing the related products
4o-q in acceptable outcomes. In order to verify the synthesis
efficiency of the coupling reaction, scaled up reactions have
been achieved, and product 4a was isolated in 62% (1 mmol)
or 58% yield (5 mmol) under a reduced catalyst loading
(Scheme 4a). The derivation and transformation of coupling
products have also been briefly demonstrated (Scheme 4).
Treatment of 4a with NaBH4 generated the corresponding
alcohol 5 in 65% yield with excellent diastereoselectivity
(Scheme 4b). The nucleophilic addition of a methyl Grignard
reagent to 4a took place well, giving product 6 in 78% yield
(2:1 d.r., Scheme 4c). [Cp*RhCl2]2-Catalyzed decarboxylative
amidation of 4a with 1,4,2-dioxazol-5-one afforded product 8
in 57% yield (Scheme 4d). In particular, by increasing the
reaction temperature and changing the proportion of
substrates, the decarboxylated product 3e′ was obtained in
51% yield (Scheme 4e). Selective removal of the N-directing
group afforded product 9 in 65% yield, which may involve a
retro-Claisen reaction and decarboxylation (Scheme 4f). By
following modified racemic reaction conditions, an asymmetric
coupling was attempted using Cramer’s chiral catalyst (R)-Rh,
affording product 4a in moderate yield but low enantiose-

lectivity (Scheme 4g). Future studies on this enantioselective
coupling are ongoing.

The mechanism of this C(sp2)−H/C(sp3)−H coupling
reaction was briefly explored. Using prepared rhodacycle 10 as
the catalyst precursor under otherwise the same conditions,
product 4a was obtained in 65% yield. This indicated that
complex 10 might be a reactive intermediate or a close
analogue in the reaction (Scheme 5a and 5b). The
stoichiometric reaction between complex 10 and 2a in the
presence of different bases did not give any product 4a, which
may suggest that the C−C forming reduction elimination is
likely oxidation-induced (Scheme 5c).19 The H/D exchange
reaction between 1a and CD3COOD produces the product
with 43% deuterization at the 2-position, suggesting the
reversibility of the initial C−H activation (Scheme 5d).
Besides, competitive experiments were conducted using
equimolar mixtures of 1e and 1k that exhibit different
electronic effects. 1H NMR analysis of the product mixture
showed that the ratio of 3e to 3k in the product was 1.3:1,
which revealed a slightly higher reactivity of the more electron-
rich indole (Scheme 5e).

Based on mechanism experiments and literature reports, a
possible catalytic cycle of the oxidative coupling has been
proposed (Scheme 6). 2a undergoes C−H activation with the
active [RhCp*(OAc)X] (X = SbF6 or OPiv) species (A) to
generate intermediate B. Next, B reacts with β-ketoesters 2a to
produce an O-bound enolate intermediate C with the
assistance of a base. Intermediate C is oxidized by a Ag(I)
oxidant to give a cationic Rh(IV) intermediate D, which
further undergoes reductive elimination to release the desired

Scheme 3. Scope of Cyclic β-Ketoester Compounds in
C(sp2)−H/C(sp2)−H Coupling Reactiona,b

aReactions conditions: α-substituted cyclic β-ketoester 1 (0.2 mmol),
N-pyrimidylindole 2a (0.1 mmol), [RhCp*Cl2]2 (4 mol %), AgSbF6
(16 mol %), AgF (3.0 equiv) and PivOH (1.0 equiv) at 70 °C in DCE
(1.0 mL) under N2 for 12 h. bIsolated yields.

Scheme 4. Derivatization of Coupled Products
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product 4a. The reductive elimination likely proceeds through
a 5-membered ring TS20 with oxygen participation. Finally, the
Rh(II) intermediate is reoxidized to Rh(III) by Ag(I) to
complete the catalytic cycle.

In summary, we have demonstrated oxidative C−H/C−H
cross-coupling reactions of N-pyrimidylindoles and β-ketoest-
ers via Rh(III)-catalyzed C−H activation. The β-ketoesters as
alkylating agents exhibited decent reactivity. This coupling has
the advantages of mild conditions and good functional group
compatibility. The ester group in the product can be
functionalized. This system offers a rare example of C−H
activation−alkylation using a methine group in nonannulative
systems.
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