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ABSTRACT: Cobalt(III) and rhodium(III)-catalyzed regio- and
chemoselective amidation of benzocyclobutenols has been realized
using dioxazolone as the amidating reagent to afford three classes of
C−N-coupled products via β-carbon elimination of the benzocy-
clobutenol. The Co(III)-catalyzed coupling initially afforded an
isolable o-(N-acylamino)arylmethyl ketone, which could further
cyclize to the corresponding indole derivatives under condition control. In contrast, efficient stepwise diamidation has been achieved
under Rh(III) catalyst control. The chemoselectivities are jointly controlled by the catalyst and reactions conditions.

In the past decades, increasing attention has been devoted to
the selective cleavage and functionalization of C−C bonds

because of the abundance of C−C bonds in almost every
organic compound.1 Given the low reactivity and steric
hindrance of common C−C bonds, the substrate activation
strategy is typically adopted, as in metal-catalyzed C−C
activation of strained three/four-membered-rings, which
provides a feasible and powerful avenue toward rapid assembly
of complicated new scaffolds because of facile scaffold
reconstruction.2 Along this line, great efforts have been
devoted to the functionalization of benzocyclobutanone3 and
derivatives.4 Dong and co-workers used the “cut-and-sew”
strategy, which involved metal-catalyzed C−C bond function-
alization by oxidative addition and coupling with unsaturated
reagents.5 As a direct derivative of benzocyclobutanone,
benzocyclobutenol also reacted in high activity and regiose-
lectivity in intermolecular reactions via selective cleavage of the
C(sp2)−C(sp3) bond.6−14 To date, metal-catalyzed C−C
activation of benzocyclobutanols has been carried out in
three reaction modes (Scheme 1). First, the Orellana group
reported Pd-catalyzed regioselective C(sp2)−C(sp2) coupling
of benzocyclobutenols with aryl bromides (Scheme 1a-1).7

Second, Murakami et al. pioneered the Rh(I)-catalyzed C−C
activation of benzocyclobutenols en route to intermolecular [4
+ 2] annulation with various π-bonds, which affords six-
membered ring alcohol (Scheme 1a-2).8 Since then, extensive
studies on C1−C2 cleavage of benzocyclobutenols has been
realized by Rh(I) catalysis, and annulation reactions with
alkene,9 alkyne,10 allene,11 and isocyanate12 have been
disclosed. This type of coupling has also been extended to
intramolecular systems by taking advantage of the resulting
ketone moiety. For example, Shi and Song et al. recently
realized Rh(I)-catalyzed cyclization of alkene-tethered benzo-
cyclobutenols followed by hydrogentransfer, which results in

the formation of benzofurans bearing a 4-β-hydroxy or 4-β-
keto moiety (Scheme 1a-3).13 In the third category, Wang
reported in 2014 a Rh(I)-catalyzed [4 + 1] ring expansion
reaction of benzocyclobutenol, which utilizes diazoesters as a
C1 precursors to afford indanols with an all-carbon quaternary
center (Scheme 1a-4).14

Most reported results in the C−C activation of benzocyclo-
butenols have focused on C(sp2)−C(sp3) or C(sp2)−C(sp2)
bond formation. In this regard, the applications of
benzocyclobutenols toward construction of C-heteroatom
bonds would be of great interest. Given the nucleophilic
nature of the benzocyclobutenol reagent, we hypothesized the
employment of a heteroatom electrophilic reagent that
matches the reactivity of the M−C(aryl) bond resulting from
β-carbon elimination of a benzocyclobutenol. In that context,
1,4,2-dioxazol-5-one proved highly reactive as a nitrene transfer
reagent under Co,15 Rh,15b,16 and Ir.15b,17 In addition, the
initial coupling generates a nucleophilic NH group tethered to
an electrophilic carbonyl, which may readily undergo
cyclization−condensation. We now report the efficient syn-
thesis of three classes of C−N-coupled products in excellent
regio- and chemoselectivity that are under catalyst and
condition control (Scheme 1b).

Initially, the reaction of benzocyclobutenol (1a) with 1,4,2-
dioxazol-5-one (2a) was screened to identify the optimal
reaction conditions (Table 1). An optimal isolated yield of
91% of product 3aa was obtained when catalyzed by
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[Cp*CoI2]2 (4 mol %) in the presence of B(OH)3 and
Na2CO3 as the additives in 1,2-dichloroethane (DCE) at 80 °C
for 1 h (entry 1). In contrast, other catalysts, such as
[Cp*Co(CO)I2]2, [Cp*IrCl2]2, and [(p-cymene)RuCl2]2,
were all less active or completely inactive (entries 2−4). No
desired product was detected when [Cp*CoI2]2 was omitted

(entry 5). Further investigation of additives revealed that Lewis
acid seemed to provide the desired product in good yield, and
B(OH)3 performed best to give 84% yield (entries 6−10).
B(OH)3 may play a pivotal role in activating dioxazolone
toward migratory insertion of the nitrene and suppressing the
background reaction of a base-mediated simple ring opening.
The yield was further increased by the addition of Na2CO3,
which increased yield slightly when added alone (entry 11).
Solvent screening revealed that DCE was superior to others
(entries 12−14).

With the optimized reaction conditions in hand, the scope
and generality of this coupling system was examined (Scheme
2). A range of dioxazolones 2 with diverse steric and electronic
properties, such as Me, Et, iPr, nBu, and cyclopropyl, reacted in
high reactivity under the standard reaction conditions (3aa−
3ae). In comparison, dioxazolones bearing an aryl group (Ph,
4-MeC6H4, 4-OMeC6H4, 4-ClC6H4, 4-FC6H4, and 4-
NO2C6H4) generally exhibited lower reactivity, and a
prolonged reaction time was necessary to ensure moderate
reactivity (3af−3al). In addition, 3-(2-furanyl)-1,4,2-dioxazol-
5-one also reacted to give the target product (3ag, 46% yield).

Next, the scope of benzocyclobutenols was investigated in
the reaction with 3-methyl-1,4,2-dioxazol-5-one (Scheme 2).
Benzocyclobutenols bearing diverse alkyl or aryl groups, such
as Et, iPr, Cy, Bn, cyclopropyl, and Ph, were all tolerated
regardless of the electronic effect, thereby affording the
corresponding products 3ba−3ga in good yield. Variation of
the aromatic ring in the benzocyclobutenols was also
successful, as in the smooth reaction of 5-Me-, 4-Me-, 4-
OMe-, 4,5-dimethoxy-, and 3-Cl-substituted benzocyclobute-
nols (3ha−3la). Extension to a 2-naphthalene-based substrate
was also successful (3ma, 61% yield).

During our optimization studies, an annulated indole such as
4aa was detected when the reaction was conducted for a

Scheme 1. C−C Bond Cleavage of Benzocyclobutenols

Table 1. Optimization Studies of the Amidation Reactiona‑c

entry variations from conditions yield (%)

1 none 91 (91)
2 [Cp*Co(CO)I2] instead of [Cp*CoI2]2 80
3 [Cp*IrCl2]2 instead of [Cp*CoI2]2 N.D.
4 [(p-cymene)RuCl2]2 instead of [Cp*CoI2]2 N.D.
5 without [Cp*CoI2]2 N.D.
6 without additive 30
7 without Na2CO3 84
8 Ag3PO4 (0.2) as additive 69
9 Ag2CO3 (0.2) as additive 45
10 AgOAc (0.2) as additive 33
11 without B(OH)3 37
12 MeCN as solvent 12
13 THF as solvent 38
14 DCM as solvent 74

aReaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), [Cp*CoI2]2
(4 mol %), and an additive in a solvent (1.0 mL) at 80 °C for 1 h
under N2.

bThe yield was determined by crude 1H NMR spectroscopy
using 1,3,5-trimethoxybenzene as the internal standard; isolated yield
is indicated in parentheses. cN.D. = not detected.
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prolonged reaction time, which suggested that the o-(N-
acylamino)arylmethyl ketones 3 might undergo further
cyclization via condensation. The scope of this indole synthesis
was then explored (Scheme 3). This transformation was
successfully extended to several other dioxazolones and
benzocyclobutenols. Dioxazolones with different 3-alkyl groups

all reacted well (4aa−4ae, 8−36 h). Benzocyclobutenol
bearing a 1-ethyl group afforded the corresponding indole
derivative in 43% yield (4ba). Benzocyclobutenols with 6-Cl,
6-Me, and a fused ring all quickly delivered the desired
products in satisfactory yield (4la−4na, 3−5 h). We postulated
that this facile condensation was facilitated by the steric effect
of these substituents (steric assistance). Significantly, a ring-
fused benzocyclobutenol also reacted to deliver the desired
product in excellent yield (4oa). A phenyl-substituted
dioxazolone could also afford the corresponding product 4af,
albeit under harsh conditions.

Because of the powerful role of rhodium catalyst in
amidation reactions,16,18 an efficient diamidation reaction was
realized when catalyzed by [Cp*RhCl2]2 under rather mild
reaction conditions with Ag2O (0.1 equiv) as an additive (see
Scheme 4 and Table S1). With dioxazolone as the limiting

reagent, diamidation product 5aa was isolated in 80% yield.
The formation of this product is interesting because it involved
sequential cleavage of a C−C bond and a C(sp3)−H bond.
Variation of the dioxazolones to different 3-alkyl groups (Me,
Et, and cyclopropyl) was successful, which afforded the
products 5aa, 5ab, and 5ae. The presence of alkyl, halo, and
fused rings was also well-tolerated (5ha, 5ja, 5la, and 5ma)
(Scheme 4).

We next performed a series of experimental investigations to
explore possible reaction mechanisms (Scheme 5). Control
experiments using propiophenone as a substrate failed to give
any amidating product under the standard Co-catalyzed
conditions. These results indicated that the key cobalt aryl
species was formed via C−C bond cleavage rather than C−H
bond activation, and no reversible ortho-C−H activation
should be involved. The role of the catalyst and/or the
additive during the cyclization−condensation process was next
examined. Heating a solution of 3aa in the presence of
[Cp*CoI2]2 or both [Cp*CoI2]2 and B(OH)3 gave product

Scheme 2. Substrate Scope of the Amidation of
Benzocyclobutenols with Dioxazolonesa,b

aReaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), [Cp*CoI2]2 (4
mol %), B(OH)3 (1.0 equiv), and Na2CO3 (1.0 equiv) in DCE at 80
°C under N2; isolated yield. bCompound 1 (0.1 mmol), 2 (0.15
mmol), [Cp*CoI2]2 (4 mol %), and Na3PO4 (0.2 mmol) at 60 °C in
DCM under N2; isolated yield.

Scheme 3. Substrate Scope of Co-Catalyzed Annulation
between Benzocyclobutenols and Dioxazolonesa,b

aReaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), [Cp*CoI2]2 (4
mol %), B(OH)3 (1.0 equiv), and Na2CO3 (1.0 equiv) in DCE at 80
°C under N2; isolated yield. bAt 130 °C.

Scheme 4. Substrate Scope of Diamidation of
Benzocyclobutenols with Dioxazolonesa

aReaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), [Cp*RhCl2]2 (2
mol %), and Ag2O (10 mol %) in DCM at 30 °C under N2; isolated
yield.
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3aa in 100% yield, while the employment of B(OH)3 alone
only gave cyclization product 4aa in 55% yield (Scheme 5b).
No conversion was observed when Na2CO3 alone was used.
These observations highlighted the primary Lewis acidic nature
of the Co catalyst in the cyclization of o-(N-acylamino)-
arylmethyl ketones. To further explore the process of the
cyclization, we graphed the yield−time distribution curves of
3ae and 4ae by 1H NMR analysis (Supporting Information).
Initially, 3ae was generated in a short time. As the reaction
proceeded, it subsequently decayed with the increase in the
amount of 4ae, thereby indicating the intermediacy of 3ae.
To further explore the mechanistic details of the diamidation

system, an equimolar mixture of 3aa and 2a was allowed to
react under the standard conditions, from which complex 5aa
was isolated in 43% yield. This result indicated a sequential
diamidation approach (Scheme 5c). In contrast, no diamida-
tion product was detected in the absence of [Cp*RhCl2]2,
which suggested the important role of Rh(III) in the second
amidation. A crossover experiment using benzocyclobutenol 1a
and two distinguishable dioxazolones verified that the
diamidation reaction is stepwise because two corresponding
crossover products (8 and 9) were generated (see Figure S1,
Supporting Information).
Synthetic applications have been performed (see the

Supporting Information for details). Scale-up reaction of 1a
and 2a afforded the corresponding product 3aa in 73% yield.
Transformations of indole 4aa were also conducted to
showcase its synthetic utility. The C−H alkenylation reaction
of 4aa with an alkynyl bromide afforded 6 in 97% yield, and
the oxidation reaction of 4aa provided nitrile 7 in 58% yield.
A catalytic cycle is proposed in Scheme 6 on the basis of the

above reaction results and related reports.13 An alkoxide
intermediate A is generated via ligand exchange between
Cp*Co(III) and 1a in the presence of a base, which is then
proposed to undergo regioselective β-C elimination to give a
Co−C(sp2) species B. Coordination of 2a and subsequent
decarboxylation deliver a nitrene intermediate C, possibly with
the assistance of B(OH)3. Migratory insertion of the Co−C
bond into the nitrene unit is proposed to give intermediate D,
again with possible assistance of the B(OH)3 additive.
Protonolysis of intermediate D furnishes the final product
and regenerates the catalyst.
In conclusion, we disclosed diversified amidation reactions

between benzoclobutenol and dioxazolone via Co(III)- or
Rh(III)-catalyzed C−C bond cleavage. Three classes of C−N-
coupled products have been selectively obtained in moderate
to excellent efficiency via β-carbon elimination of the
benzocyclobutenol. The Co(III)-catalyzed coupling initially

afforded an isolable o-(N-acylamino)arylmethyl ketone, which
could further cyclize to the corresponding indole derivatives
under condition control. In contrast, efficient stepwise
diamidation has been attained under Rh(III) catalyst control.
Overall, the chemoselectivities are jointly controlled by the
catalyst and reaction conditions. The generation of reactive
metal−carbon species using other common substrates is
underway in our laboratories, which may offer new possibilities
for the synthesis of complex scaffolds.
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