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Formal regiodivergent C—H alkynylation of 1-aryl-5-pyrazolones
has been realized under the catalysis of Rh(in) and Au()) complexes
by using a hypervalent iodine reagent as the alkyne source.
Mechanistic studies indicate that the regioselectivity is ascribed to
not only the choice of the catalyst but also the nature of the sub-
strate. The substrate scope and functional group compatibility
have been fully examined.

Pyrazolones and their derivatives are important structural moi-
eties that are widely used in the synthesis of pharmaceuticals,’
biologically active compounds,”> and natural products.?
Therefore, enormous efforts have been devoted to effective syn-
thesis of pyrazolones.” Over the past several decades, tran-
sition metal-catalyzed C-H activation has emerged as an atom-
and step-economic, environmentally friendly, and benign
alternative to the classical synthetic methods.> On the other
hand, the alkynylation of arenes represents an important
method to access arylalkynes.® Although it is highly desirable
to realize the oxidative alkynylation of arenes using 1-alkynes
owing to the high atom-economy and ready availability of such
alkynes, this has only been sporadically realized due to com-
petitive homocoupling of terminal alkynes.” Consequently,
alkynylation using a versatile electrophilic alkynylating reagent
may serve to solve this challenge. Thus, silylethynyl-1,2-benzio-
doxol-3(1H)-one (silyl-EBX) which was introduced by Zhdankin
has recently risen to prominence as an efficient alkynylating
reagent.® In particular, Waser and co-workers demonstrated
the functionalization of various electron-rich heterocycles such
as indoles, pyrroles, and furans using TIPS-EBX with Au(i) or
Pd(un) being a catalyst under relatively mild synthetic con-
ditions (Scheme 1, eqn (1)).° Quite recently, Loh, our group,
Glorius, and others have significantly broadened the scope of
C-H alkynylation of arenes by resorting to a C-H activation
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strategy using stable Rh, Co, Ru and Ir catalysts.® In 2014, the
Yu group realized an effective alkynylation of ethers using this
alkynylating reagent through radical C(sp®)-H bond
functionalization under metal-free reaction conditions."" In
addition, in 2016 Waser also reported the thrifty oxyalkynyla-
tion of diazo compounds under mild conditions using an in-
expensive copper catalyst."?

Despite the impressive progress, the selective alkynylation
of a specific C-H bond remains a major challenge. Ideally, the
selectivity is controllable by way of different catalytic con-
ditions. In this regard, the ortho- and para-selective alkynyla-
tion of anilines using AuCl as a catalyst and TIPS-EBX as an
electrophilic alkynylation equivalent has been accomplished.
This selectivity was dictated by a mechanism containing a
directing effect of the nitrogen functional group."* The C2- or
C3-selective alkynylation of indoles and other heterocycles has
also been achieved under different reaction conditions."* In
2016, our group and Patil have independently reported the
site-selective alkynylation of 2-pyridones and isoquinolones
under complementary Au(1) and Rh(m) catalyzed conditions
using this alkynylating reagent (Scheme 1, eqn (2))."> With our
ongoing interest in site-selective C-H bond functionalization
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Scheme 1 Metal-catalyzed site-selective alkynylation.
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and the importance of pyrazolones in organic synthesis, we
herein report on the Au(1)- and Rh(m)-catalyzed formal regiodi-
vergent C-H alkynylation of pyrazolones (Scheme 1, eqn (3)).

We reasoned that 1-phenyl-1H-pyrazol-5-one contains a
phenyl group that is prone to C-H activation when assisted by
the pyrazolone nitrogen coordination.'® In addition, this het-
erocycle is also intrinsically reactive in a number of electrophi-
lic functionalization reactions.'” We initiated our studies by
optimizing the reaction conditions of the coupling of
3-methyl-1-phenyl-1H-pyrazol-5-one (1a) with TIPS-EBX (2a),
and the results are summarized in Table 1. As for the catalyst,
Rh(m) catalysts were our first choice since they have proven
highly efficient in catalytic C-H alkynylation."®"> When
[RhCp*Cl,], was employed as a catalyst and AgSbF; as a halide
abstractor, the desired product 3a was obtained in 65% yield at
80 °C (entry 1). The cationic rhodium catalyst [RhCp*(MeCN);]
(SbFg), and the [IrCp*Cl,],/AgSbF; catalyst led to slightly lower
yields (entries 2 and 3). Effects of the reaction temperature
were then examined, and couplings at both 50 °C and 100 °C
gave inferior results (entries 4 and 5). We also tested the effect
of acid and base additives. To our delight, the isolated yield of
3a was improved to 73% in the presence of Na,CO; (entry 6).
Lewis acid additive, such as Zn(OTf),, led to lower efficiency
(entry 9), which stands in contrast to our previous
studies.'***”

With the optimized conditions in hand, we next examined
the scope and generality of this catalytic system (Scheme 2).
3-Methyl-1-aryl-1H-pyrazol-5-one bearing both electron-donat-
ing and -withdrawing groups at the para position reacted
smoothly to afford the desired products in moderate to good
yields (3b-3i), although the introduction of an EWG tends to
attenuate the yields (3h and 3i). It is noteworthy that easily
functionalizable halogen groups were well tolerated (3c-3e).
The introduction of an ortho-fluoro group was also tolerated,

Table 1 Optimization studies”

A\
Oﬂ TIPS———|—0 catalyst (4 mol %) O;\ﬁ
N additives N _
+ - -
@H o solvent, Temp., 12 h @/
3a

1a 2a

TIPS

Entry  Catalyst Additive ~ T(°C)  Yield” (%)
1 RhCp*Cl,],/AgSbFg — 80 65
2 IrCp*Cl,],/AgSbFs — 80 43
3¢ RhCp*(MeCN);](SbFs),  — 80 63
4 RhCp*Cl,],/AgSbF¢ — 50 60
5 RhCp*Cl,],/AgSbFg — 100 50
6 RhCp*Cl,],/AgSbF, Na,CO; 80 73
7 RhCp*Cl,],/AgSbF, Pyridine 80 <5
8 RhCp*Cl,],/AgSbFg Li,CO; 80 50
9 RhCp*Cl,],/AgSbF, Zn(OTf), 80 42

“Reaction conditions: 1a (0.20 mmol), 2a (0.24 mmol), catalyst
(4 mol%), AgSbFs (16 mol%) and additive (1.5 equiv.) in a solvent
(2.0 mL) at 50-100 °C under N, for 12 h. ?Isolated yield after column
chromatography. ‘[RhCp*(MeCN);](SbFe), (8 mol%) was used as a
catalyst.
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Scheme 2 Rh(i)-Catalyzed C—H activation assisted by pyrazolone.
Reaction conditions: 2-Aryl-3-pyrazolone (0.20 mmol), silyl-EBX
(0.24 mmol), [RhCp*Cly], (4 mol%), AgSbFs(16 mol%), Na,COs
(0.3 mmol), DCE (2.0 mL), 80 °C, 12 h, pressure tube, under nitrogen.
Isolated yield after column chromatography.

delivering 3j in 35% yield. The meta-Me and -OMe groups were
also compatible, and the coupling occurred at the less hin-
dered ortho position (3k and 31). However, the coupling of a
meta bromo- or fluoro-substituted arene gave a mixture of
regioisomeric products in good to high combined yields and
in 2-5:1 regioselectivity (3m-3n). The alkynylating reagents
were successfully extended to TBDPS-EBX, TES-EBX and ‘Bu-
EBX (30-3t). As has been previously observed,'*” TMS- and Ph-
EBX either failed to participate in this reaction or reacted in
poor efficiency (3u and 3v), likely due to the lack of steric
protection.'%%1%”

We reasoned that when the N-directing effect is overruled
by the electronic effect of the heterocycle, the alkynylation may
be achieved at the most electron-rich C4 position of the hetero-
cycle via an electrophilic alkynylation pathway. The alkynyla-
tion of 2,3-dimethyl-1-aryl-5-pyrazolone (4) with TIPS-EBX (2a)
was then explored using a gold catalyst. Indeed, after extensive
screening, the coupling of 2,3-dimethyl-1-aryl-5-pyrazolone
with TIPS-EBX proceeded smoothly at 80 °C, and the desired
product 5a was obtained in 71% yield when catalyzed by AuCl
(Scheme 3). The C4-selectivity was fully confirmed by 'H and
3C NMR analyses of the product.'® We then moved on to
investigate the scope of this coupling reaction. The derivatives
of 2,3-dimethyl-1-aryl-5-pyrazolone bearing various electron-
donating and electron-withdrawing substituents, such as
halogen (5¢c-5e, 5j), methyl (5b, 5h), and CN (5g) groups, at the
para or meta position of the aryl ring all underwent smooth
coupling without significant variation in the isolated yields
(61%-82%). In contrast, the aryl ring with a para or ortho OMe
(5f, 5i) group gave rather low conversion, indicating that a para
electron-donating group lowered the reactivity. Besides, N-ethyl
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Scheme 3 Au-Catalyzed C4-alkynylation of N-alkyl pyrazolone.
Reaction conditions: 2-Aryl-3-pyrazolone (0.20 mmol), TIPS-EBX
(0.24 mmol), AuCl (5 mol%), pyridine (0.24 mmol), "Bu,O (2.0 mL),
80 °C, 14 h, under nitrogen. Isolated yield after column
chromatography.

and -propyl groups were also compatible (5k-50), although
slightly lower yields were isolated due to steric hindrance.

A series of experiments were conducted to investigate the
reaction mechanism (Scheme 4). H/D exchange experiment
was performed between 1a and CD;COOD under the Rh(ui)-
catalyzed conditions. Deuteration was detected at both ortho
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Scheme 4 Mechanistic consideration of Rh(in)-catalyzed alkynylation.
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Scheme 5 Mechanistic consideration under Au-catalyzed conditions.

positions of the benzene ring, indicating the reversibility of
the C-H cleavage in the absence of any coupling partner
(Scheme 4a). In addition, a competition reaction using
TIPS-EBX and two electronically differentiated compounds 1b
and 1i afforded the corresponding products 3b and 3i in a
ratio of 1.2 : 1, suggesting that an electron-rich arene exhibited
slightly higher reactivity (Scheme 4b). The measurement of
kinetic isotope effect (KIE) was performed to further under-
stand the C-H activation process. A relatively small value KIE =
1.5:1 was obtained from two parallel reactions (Scheme 4c),
which suggested that the C-H bond cleavage was not involved
in the turnover-limiting step. On the basis of previous litera-
ture and our experimental studies,'® we proposed a plausible
mechanism involving the formation of rhodacycles
(Scheme 4d). Initially, the formation of [Cp*RhCl,] via ligand
substitution and chelation-assisted C-H activation of 1a leads
to a rhodacycle intermediate A, followed by oxidative addition
of the C-I bond of silyl-EBX to generate a Rh(v) alkynyl benzo-
ate intermediate B. Subsequent C-C reductive elimination
gives the alkynylated product 3a along with a Rh(m) benzoate
intermediate C. Finally, the protonolysis of C regenerates the
Rh(m) catalyst and releases the 2-iodobenzoate coproduct.'*

On the other hand, the H/D exchange (D 50%) of 4a was
observed at the C(4) position of the pyrazolone moiety when
the reaction was carried out under the Au(i)-catalyzed con-
ditions as shown in Scheme 3 by using CD;COOD as a deuter-
ium source (Fig. S1 in the ESIT). This surely suggests the rele-
vancy of electrophilicity at this position. Therefore, a plausible
mechanism, which involves an Au(i)/Au(m) cycle, has been pro-
posed as a working hypothesis (Scheme 5). The oxidative
addition of Au(i) with R-EBX leads to the formation of the Au
(mr) alkynyl intermediate, which then undergoes an electrophi-
lic arylation. Next, the reductive elimination affords the final
product and regenerates the Au(i) catalyst to complete the cata-
Iytic cycle.'®”

Conclusions

In summary, we have developed a formal regiodivergent C-H
alkynylation of different 2-aryl-3-pyrazolones catalyzed by
rhodium and gold catalysts. The regioselectivity depends on
the nature of the substrate, as well as the choice of the tran-
sition metal catalyst. Under the catalysis of Rh(u), the alkynyla-
tion occurred at the aryl ring with the assistance of an

This journal is © The Royal Society of Chemistry 2018
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N-chelation group. The Au-catalyzed C4-selective alkynylation
of pyrazolones proceeded via an electrophilic pathway. Future
studies are directed to the regiodivergent functionalization of
other heteroarenes via metal-catalyzed C-H activation.
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