

Letter

Palladium-Catalyzed Regio- and Enantioselective Hydrophosphination of *gem*-Difluoroallenes

Danqing Ji, Zisong Qi,* and Xingwei Li*

ABSTRACT: Chiral allylic phosphines and *gem*-difluoroalkenes are both important structural motifs in various bioactive molecules, chiral ligands, and natural products. These two motifs are now integrated, and we herein report a straightforward and atomeconomical enantioselective hydrophosphination of *gem*-difluoroallenes using disubstituted phosphines. A wide array of enantioenriched fluorinated allylic phosphines has been accessed with excellent regio- and enantioselectivity and high efficiency. Synthetic and catalytic applications of phosphine products have been demonstrated.

nantioenriched organophosphorus compounds have been E widely employed in asymmetric catalysis,¹ material science,² and biological studies.³ Thus, the selective construction of chiral organophosphorus compounds has attracted increasing attention. In particular, allylic phosphines are useful chiral ligands as well as versatile synthetic building blocks for downstream conversions.⁴ Therefore, various asymmetric catalytic methods have been developed to synthesize chiral allylic phosphine (oxides), including asymmetric allylation of secondary phosphine oxides,⁵ conjugate addition to electrondeficient dienes,⁶ and hydrofunctionalization of diphenylphosphinylallenes.⁷ Among them, asymmetric hydrophosphination of unsaturated molecules has emerged as a straightforward and atom-economical strategy. In this respect, the Duan group and the Leung group independently reported palladium-catalyzed asymmetric addition of diarylphosphines to electronically activated 1,3-dienes, affording chiral allylic phosphine derivatives.⁶ In 2018, the Dong group reported Pd-catalyzed enantioselective hydrophosphinylation of unactivated dienes with excellent enantio- and regiocontrol (Scheme 1a).8 In 2022, Yin realized a related hydrophosphinylation system by employing nickel/Brønsted acid catalysis.⁹ Very recently, other unsaturated reagents started to be employed in this line.¹⁰⁻¹² A highly enantioselective hydrophosphinylation of alkyl- and aryl-functionalized oxyallenes was achieved by the Wang group in 2021 (Scheme 1a).¹¹ The same group further reported palladium-catalyzed hydrophosphinylation of methylenecyclopropanes (MCPs) via a regioselective ring-opening process.¹²

Despite these impressive reports, a P(V)-H reagent remains predominantly used as in hydrophosphinylation reactions. This is likely ascribed to the strong inhibitive effect of the P(III)-H counterpart that may readily cause catalyst poisoning. Thus, asymmetric access to chiral allyl phosphine via hydro-

Scheme 1. Synthesis of Allylphosphine (Oxide) via Addition of P–H Bonds

(a) Asymmetric P-H addition for synthesis of chiral allylic diphenylphosphines (oxides)

(b) Nucleophilic addition to gem-difluoroallenes

(c) This work: Asymmetric hydrophosphination of gem-difluoroallenes

Received: June 21, 2023

phosphination of unsaturated molecules has remained largely underdeveloped. Our initiative was to adopt substrate activation by employing an allene that is activated by an electron-withdrawing group (EWG) instead of by an electrondonating group (EDG) as in Wang's recent report (Scheme 1b).¹¹

Indeed, the introduction of a gem-difluoro group significantly enhances the reactivity of the allene reagent, and partial positive charge is distributed at the α -carbon (CF₂) of gemdifluoroalkenes. Meanwhile, the non-fluorinated double bond is also activated with a lower HOMO energy.¹³ Consequently, nucleophilic addition to gem-difluoroalkenes may follow complex regioselectivity. In 2006, Hammond and co-workers reported the α -selective nucleophilic addition-vinylic substitution (S_NV reaction) of the gem-difluoroallenes to deliver trisubstituted monofluoroallenes.¹⁴ γ -Selective addition seems more common in the reaction with various nucleophiles. Ichikawa found that 1,1-difluoroallenes underwent γ -selective nucleophilic addition with an organometallic species (Nu–M), and the resulting difluorovinylcopper intermediates were then trapped by an electrophile to generate a 2,2-disubstituted 1,1difluoroalkene.^{15,16} Subsequently, the Xu group and the Feng group independently demonstrated copper-catalyzed γ -selective boryl- and silyl-addition to gem-difluoroallenes.¹⁷ Impressively, Shi reported regiodivergent additions of thiol S-H bonds to gem-difluoroallenes at the β - and γ -positions under ligand control in 2022. Shi also extended the nucleophile to amines.¹⁸ Later, the Feng group presented Rh-catalyzed γ selective hydroarylation of disubstituted gem-difluoroallenes to create benzylic quaternary centers.¹⁹ Very recently, the Gao group reported, in one example, rhodium-catalyzed γ -hydroamination of gem-difluoroallenes with NH sulfoximines. However, only poor enantioselectivity and reactivity were realized.²⁰ Thus, only very limited examples of asymmetric catalytic additions of gem-difluoroallenes have been reported so far, among which secondary phosphines have not been included as a nucleophile.

We reasoned that moving from oxyallenes to the oppositely activated *gem*-difluoroallenes should render significant substrate activation (Scheme 1b). In addition, the high activity of the *gem*-difluoroallenes may also accommodate less reactive secondary phosphine nucleophiles. Building on our interest in asymmetric hydrophosphination of unsaturated molecules,²¹ we now report palladium-catalyzed asymmetric hydrophosphination of *gem*-difluoroallenes with secondary phosphines, which offers an atom-economic method to access *gem*-difluoroallylphosphines in good reactivity and excellent regioand enantioselectivity (Scheme 1c).

We initiated our studies by employing gem-difluoroallene 1a and diphenylphosphine 2a as model substrates under palladium catalysis (Table 1). Our screening of ligands indicated that electron-rich bidentate phosphine ligands L1– L5 with three different chiral backbones all enabled formation of the γ -selective product in good yield when palladium acetate was used as the catalyst (entries 1–5). The initial trivalent phosphine product was slightly unstable in air, and it was treated with H₂O₂ to facilitate subsequent isolation and analysis. Ligand L4 was identified as a superior one, affording **3aa** in 67% yield and 84:16 er (entry 4). Further optimization of the palladium source showed that the use of (η^3 -allyl)(η^5 -Cp)Pd (Pd1) led to improved enantioselectivity (88:12 er, entry 7). The enantioselectivity was further improved when a 1-phenyl group was introduced to the allyl ligand (Pd2

Table 1. Optimization of Reaction Conditions^{*a,b*}

Ph	━━=CF ₂ + ⊢	IPPh ₂ -	[Pd]/L* additive Ph	PPh ₂ CF ₂	H ₂ O ₂	CF2
	1a	2a		3aa'		3aa
entry	Pd	L*	additive	solvent	yield (%)	e.r.
1	$Pd(OAc)_2$	L1		PhMe	64	30:70
2	$Pd(OAc)_2$	L2		PhMe	59	66:34
3	$Pd(OAc)_2$	L3		PhMe	55	70.5:29.5
4	$Pd(OAc)_2$	L4		PhMe	67	84:16
5	$Pd(OAc)_2$	L5		PhMe	46	52.5:47.5
6	$Pd(dba)_2$	L4		PhMe	58	87:13
7	Pd1	L4		PhMe	75	88:12
8	Pd2	L4		PhMe	73	89:11
9	Pd2	L4		DCM	76	90.5:9.5
10	Pd2	L4		THF	60	88:12
11	Pd2	L4	PhCO ₂ H	DCM	61	89.5:10.5
12	Pd2	L4	KOPiv	DCM	78	93:7
13	Pd2	L4	KOPiv	DCM	83	95:5 [°]
ı						
$\begin{array}{c} \overbrace{Pd}^{Pd} \\ R = H, Pd1 \\ R = Ph, Pd2 \\ R = H, Pd2 \\ R = H, Pd2 \\ R = H, Pd1 \\ R = Ph, Pd2 \\ L1 \\ R = Ph, Pd2 \\ R = Ph, $						

^bReaction conditions: *gem*-difluoroallenes (0.12 mmol), HPPh₂ (0.1 mmol), [Pd] (5 mol %), chiral ligand (6 mol %), additives (50 mol %) in a solvent (2.0 mL) at 25 °C for 48 h, then H_2O_2 was added and stirred for 20 min at 0 °C. Isolated yield. The e.r. was determined by HPLC analysis using a chiral stationary phase. ^cThe reaction was conducted at -20 °C for 60 h.

catalyst, entry 8). DCM turned out to be an optimal solvent (entry 9). To further improve the enantioselectivity, a base additive was introduced.²¹ It was found that the addition of KOPiv noticeably enhanced the enantioselectivity (entry 12), while other acids or bases appeared to give inferior results (entry 11). Finally, the reaction was subjected to -20 °C for a prolonged reaction time, delivering the target product **3aa** in 83% isolated yield and 95:5 e.r. (entry 13). In all cases, only the γ -selective product was detected.

With the optimized conditions in hand, we then examined the scope of gem-difluoroallenes with Ph₂PH as the coupling reagent (Scheme 2). gem-Difluoroallenes with a distal benzene ring functionalized with an electron-donating (3ab), halogen (3ac), electron-withdrawing (3ad and 3ae), and electronneutral substituent (3af) at the para position were well tolerated. Besides, the ortho- and meta-substituted phenyl ring also showed excellent stereoselectivity and efficiency (3ag-3ai, 94:6 to 95.5:4.5 e.r.). Moreover, various substituents such as a long aliphatic chain (3ai), a chloro substituent (3am), a benzyloxy (3an), and an OTBS group (3ao) at the distal end were well compatible with the standard conditions. It is worth mentioning that allene substrates containing terminal alkene and alkyne motifs were all applicable (3ak and 3al, 97:3 and 96:4 e.r., respectively). Extension of the arene ring to heterocycles such as thiophene, furan, and indole also turned out to be successful (3ap-3ar, 95:5 to 96.5:3.5 e.r.). Significantly, the substrate bearing a stereogenic center also underwent smooth reaction with high diastereoselectivity (3as, 94:6 d.r.). Substrate 1t with a pendent tertiary group reacted to furnish the corresponding product 3at with moderate yield and lower enantioselectivity at a higher temperature (90:10 er), probably due to the steric effect. The tetrasubstituted gem-

^{*a*}Reaction conditions: *gem*-difluoroallenes (0.12 mmol), HPPh₂ (0.1 mmol), **Pd2** (5 mol %), **L4** (6 mol %), KOPiv (50 mol %) in DCM (2.0 mL) at -20 °C, 60 h, then H₂O₂ at -20 °C for 20 min. Isolated yield. The e.r. was determined by HPLC analysis using a chiral stationary phase. ^{*b*}The reaction was conducted at 0 °C for 60 h. ^{*c*}The reaction was conducted at 30 °C for 24 h.

difluoroallenes **1u** gave the target product **3au** in 86% yield with poor enantioselectivity.

We next explored the scope of symmetric diarylphosphines in coupling with *gem*-difluoroallene **1a**. As given in Scheme 3, diarylphosphines bearing different electron-donating and -withdrawing groups at the *para* position all reacted smoothly

"Reaction conditions: gem-difluoroallenes (0.12 mmol), HPR₂ (0.1 mmol), Pd2 (5 mol %), L4 (6 mol %), KOPiv (50 mol %) in DCM (2.0 mL) at -20 °C, 60 h, then H₂O₂ at -20 °C for 20 min. Isolated yield. The e.r. was determined by HPLC analysis using a chiral stationary phase.

to give the corresponding products with excellent enantioselectivity (3ba-3ha). A 1,3-disubstituted diarylphopshine also performed well in terms of reactivity and enantioselectivity (3ia, 95.5:4.5 e.r.). Other diarylphosphines with different meta substituents also coupled smoothly to yield the products in comparable enantioselectivity and yields (3ka and 3la). The absolute configuration of product 3ka was determined to be (R) by X-ray crystallographic analysis (CCDC 2248855), and those of other products were assigned by analogy. In addition, di(2-naphthyl)phosphine also reacted efficiently to deliver the desired product 3ja in 97:3 er and 71% yield. Significantly, an ortho-methoxy-substituted diarylphosphine was also tolerated regardless of its steric effect (3ma, 97.5:2.5 e.r.). The phosphine substrate is not restricted to diaryl substitution, and dibenzylphosphine participated with high enantioselectivity and good yield (3na, 96.5:3.5 e.r.). In contrast, no reactivity was observed for dialkylphsophines such as Cy₂PH and ^tBu₂PH under various reaction conditions, possibly due to substrate inhibition.

Encouraged by the success of symmetric phosphines, we next evaluated a non-symmetric secondary phosphine 2' (Scheme 4). The coupling with allene 1a was extensively

Scheme 4. Unsymmetric Secondary Phosphines in Enantioselective Hydrophosphination

attempted under various catalytic conditions, eventually furnishing product 4 in 58% yield as a mixture of diastereomers (dr = 1.5:1) with 88:12 e.r. for the major diastereomer and 87.5:12.5 e.r. for the minor one.

To demonstrate the synthetic utility of this methodology (Scheme 5), gem-difluoroallylphosphine 3aa was synthesized in high yield on a 2.0 mmol scale without a loss of enantioselectivity (Scheme 5a). The direct hydrophosphinated product (3aa') could be protected by sulfur and borane, affording phosphine sulfide 5 and borane–phosphine adduct 6, respectively (Scheme 5b). Treatment of 3aa with Grignard

Scheme 5. Derivatization Reactions

https://doi.org/10.1021/acs.orglett.3c02031 Org. Lett. XXXX, XXX, XXX-XXX reagent in the presence of a nickel catalyst afforded the methylated product 7 in 67% yield with erosion of the enantiopurity (Scheme 5c). Phosphine **3aa'** was then utilized as a chiral ligand in copper(I)-catalyzed asymmetric 1,4-conjugate hydrophosphination of α,β -unsaturated amides,²² delivering product **8** with promising enantioselectivity (71:29 e.r., Scheme 5d).

Preliminary studies were conducted to investigate the mechanism (Scheme 6). A deuterium labeling experiment

was conducted using $\text{D-PPh}_2\ (90\%\ \text{D})$ and gem-difluoroallene 1a under the standard conditions, producing the partially deuterated **3aa**- d_n with approximately 29% D at the β -position. After rigorously drying all substrates and the solvent, we found that the deuterium incorporation of $3aa-d_n$ was increased to 40% (Scheme 6a). This observation may imply the plausibility of a palladium vinyl species in this coupling system, which is followed by a process of protonolysis or sigma-bond metathesis. The high acidity of the PH and adventitious water may account for the reduced level of deuteration in the product. In a control experiment using a non-fluorinated terminal allene, no desired coupling was observed, which further substantiated the critical role of the gem-difluoro group to ensure reactivity (Scheme 6b). A plausible reaction mechanism is then proposed (Scheme 6c). Initially, HPPh₂ and L^*PdX_2 reacted to afford a $Pd(II)-PPh_2$ species (A) through ligand exchange. Given the strong ligating ability of the non-fluorinated double bond and the electron-richness of the allene middle carbon,^{16,23} olefin-bound intermediate B was proposed, where the R group in the allene is pointed away from the chiral ligand and the metal center for minimized steric repulsions. Then, enantiodetermining and regioselective migratory insertion of the PPh₂ occurs into the γ -carbon of gem-difluoroallenes via transition state C to give intermediate D. Finally, protonolysis of the Pd-vinyl bond or σ bond metathesis furnishes the direct product 3aa' with regeneration of the Pd(II) catalyst.

In summary, we have developed an asymmetric hydrophosphination of *gem*-difluoroallenes by integrating organofluorine and organophosphine chemistry. With substrate activation enabled by the *gem*-difluoro group, the palladiumcatalyzed system tolerated a broad scope of secondary phosphines with excellent regio- and enantioselectivity. The reaction exhibits good compatibility of functional groups, and the *gem*-difluoroallylphosphine products could be further engaged in asymmetric catalysis as a potential chiral ligand. The asymmetric hydrophosphination reaction may open a new avenue to access chiral fluorinated allylic phosphine derivatives. The reactivity of *gem*-difluoroallenes warrants further investigation, and other potential applications are actively explored in our laboratory.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.3c02031.

Experimental details and characterization data (PDF)

Accession Codes

CCDC 2248855 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Zisong Qi School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China; orcid.org/0000-0003-2914-4828; Email: qizs@ snnu.edu.cn
- Xingwei Li School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China;
 orcid.org/0000-0002-1153-1558; Email: lixw@ snnu.edu.cn

Author

Danqing Ji – School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.3c02031

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from Natural Science Basic Research Program of Shaanxi (2022JM-079) and SNNU is gratefully acknowledged.

REFERENCES

(1) (a) Ye, L.-W.; Zhou, J.; Tang, Y. Phosphine-triggered synthesis of functionalized cyclic compounds. *Chem. Soc. Rev.* **2008**, *37*, 1140–1152. (b) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. *Chem. Rev.* **2018**, *118*, 10049–10293. (c) Ni, H.;

Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. *Chem. Rev.* 2018, 118, 9344–9411.

(2) (a) Mallesham, G.; Swetha, C.; Niveditha, S.; Mohanty, M. E.; Babu, N. J.; Kumar, A.; Bhanuprakash, K.; Rao, V. J. Phosphine oxide functionalized pyrenes as efficient blue light emitting multifunctional materials for organic light emitting diodes. *J. Mater. Chem. C* 2015, *3*, 1208–1224. (b) Kim, H.; Lee, J.; Jung, H. Study on the carbamoyl phosphine oxide moiety functionalized mesoporous graphene for the removal of rare earth elements. *J. Porous Mater.* 2019, *26*, 931–939. (c) Zhang, S.; Yuan, D.; Zhang, Q.; Wang, Y.; Liu, Y.; Zhao, J.; Chen, B. Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent. *J. Mater. Chem. A* 2020, *8*, 10925–10934.

(3) (a) Seto, H.; Kuzuyama, T. Bioactive natural products with carbon-phosphorus bonds and their biosynthesis. *Nat. Prod. Rep.* **1999**, *16*, 589–596. (b) Orsini, F.; Sello, G.; Sisti, M. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications. *Curr. Med. Chem.* **2010**, *17*, 264–289. (c) Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α -Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. *J. Med. Chem.* **2011**, *54*, 5955–5980. (d) Govea, R. M.; Zhou, S.; Carlton, S. M. Group III metabotropic glutamate receptors and transient receptor potential vanilloid 1 co-localize and interact on nociceptors. *Neuroscience* **2012**, *217*, 130–139. (e) Horsman, G. P.; Zechel, D. L. Phosphonate Biochemistry. *Chem. Rev.* **2017**, *117*, 5704–5783.

(4) (a) Harmat, N. J. S.; Warren, S. Chiral synthesis of Z-2butylidenecyclohexan-1-OL and -1-YL phenylsulphide from optically active phosphine oxides. Tetrahedron Lett. 1990, 31, 2743-2746. (b) Demay, S.; Lotz, M.; Polborn, K.; Knochel, P. Preparation of a rigid bicyclic diphosphine by radical cyclisation. Tetrahedron: Asymmetry 2001, 12, 909-914. (c) Camps, P.; Colet, G.; Font-Bardia, M.; Muñoz-Torrero, V.; Solans, X.; Vázquez, S. Straightforward regio- and stereo-selective synthesis of t-2-[(diphenylphosphinoyl)methyl]-c-3-(disubstitutedphosphinoyl)-r-1cyclopentanols. Tetrahedron 2002, 58, 3473-3484. (d) Hah, J. H.; Lee, B. S.; Lee, S. Y.; Lee, H.-Y. A facile synthesis of 1,2oxaphospholenes and stereoselective conversion into oxaphospholanes. Tetrahedron Lett. 2003, 44, 5811-5814. (e) Stankevič, M.; Jaklińska, M.; Pietrusiewicz, K. M. Michael-Type Addition of Secondary Phosphine Oxides to (1,4-Cyclohexadien-3-yl)phosphine Oxides. J. Org. Chem. 2012, 77, 1991-2000. (f) Jaklińska, M.; Cordier, M.; Stankevič, M. Stereoselectivity of Michael Addition of P(X)-H-Type Nucleophiles to Cyclohexen-1-ylphosphine Oxide: The Case of Base-Selective Transformation. J. Org. Chem. 2016, 81, 1378-1390.

(5) (a) Butti, P.; Rochat, R.; Sadow, A. D.; Togni, A. Palladium-Catalyzed Enantioselective Allylic Phosphination. Angew. Chem., Int. Ed. 2008, 47, 4878-4881. (b) Hong, L.; Sun, W.; Liu, C.; Zhao, D.; Wang, R. Enantioselective construction of allylic phosphine oxides through substitution of Morita-Baylis-Hillman carbonates with phosphine oxides. Chem. Commun. 2010, 46, 2856-2858. (c) Sun, W.; Hong, L.; Liu, C.; Wang, R. Base-Accelerated Enantioselective Substitution of Morita-Baylis-Hillman Carbonates with Dialkyl Phosphine Oxides. Org. Lett. 2010, 12, 3914-3917. (d) Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides. J. Am. Chem. Soc. 2019, 141, 16584-16589. (e) Qiu, H.; Dai, Q.; He, J.; Li, W.; Zhang, J. Access to P-chiral sec- and tert-phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chem. Sci. 2020, 11, 9983-9988. (f) Zhang, S.; Xiao, J.-Z.; Li, Y.-B.; Shi, C.-Y.; Yin, L. Copper(I)-Catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines. J. Am. Chem. Soc. 2021, 143, 9912-9921. (g) Zhang, Q.; Liu, X.-T.; Wu, Y.; Zhang, Q.-W. Ni-Catalyzed Enantioselective Allylic Alkylation of H-Phosphinates. Org. Lett. 2021, 23, 8683-8687.

(6) (a) Lu, J.; Ye, J.; Duan, W.-L. Palladium-catalyzed asymmetric 1,6-addition of diarylphosphines to $\alpha_{,\beta,\gamma,\delta}$ -unsaturated sulfonic esters:

controlling regioselectivity by rational selection of electron-withdrawing groups. *Chem. Commun.* **2014**, *50*, 698–700. (b) Yang, X.-Y.; Gan, J. H.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Palladium catalyzed asymmetric hydrophosphination of $\alpha_{,}\beta_{-}$ and $\alpha_{,}\beta_{,}\gamma_{,}\delta$ -unsaturated malonate esters – efficient control of reactivity, stereo- and regioselectivity. *Dalton Trans.* **2015**, *44*, 1258–1263. (c) Yang, X.-Y.; Tay, W. S.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Asymmetric 1,4-Conjugate Addition of Diarylphosphines to $\alpha_{,}\beta_{,}\gamma_{,}\delta$ -Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. *Organometallics* **2015**, *34*, 5196–5201.

(7) (a) Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. Rhodium-Catalyzed Asymmetric Hydroarylation of Diphenylphosphinylallenes with Arylboronic Acids. J. Am. Chem. Soc. 2006, 128, 2556-2557. (b) Nishimura, T.; Guo, X.-X.; Hayashi, T. Rhodium-Catalyzed Asymmetric Addition of Terminal Alkynes to Diarylphosphinylallenes. Chem. Asian J. 2008, 3, 1505-1510. (c) Kawamoto, T.; Hirabayashi, S.; Guo, X.-X.; Nishimura, T.; Hayashi, T. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosulfenylation of diphenylphosphinylallenes. Chem. Commun. 2009, 3528-3530. (d) Hatano, M.; Horibe, T.; Ishihara, K. Chiral Magnesium(II) Binaphtholates as Cooperative Brønsted/Lewis Acid-Base Catalysts for the Highly Enantioselective Addition of Phosphorus Nucleophiles to α,β -Unsaturated Esters and Ketones. Angew. Chem., Int. Ed. 2013, 52, 4549-4553. (e) Huang, Y.; Chew, R. J.; Pullarkat, S. A.; Li, Y.; Leung, P.-H. Asymmetric Synthesis of Enaminophosphines via Palladacycle-Catalyzed Addition of Ph₂PH to α , β -Unsaturated Imines. J. Org. Chem. 2012, 77, 6849-6854. (f) Hu, W.; Li, E.-Q.; Duan, Z.; Mathey, F. Concise Synthesis of Phospholene and Its P-Stereogenic Derivatives. J. Org. Chem. 2020, 85, 14772-14778. (g) Huang, Z.; Liu, X.-T.; Cui, R.; Zhang, Q.-W. Nickel-catalysed enantioselective reaction of secondary phosphine oxides and activated vinylcyclopropanes. Org. Biomol. Chem. 2023, 21, 3096-3100.

(8) Nie, S.-Z.; Davison, R. T.; Dong, V. M. Enantioselective Coupling of Dienes and Phosphine Oxides. J. Am. Chem. Soc. 2018, 140, 16450–16454.

(9) Long, J.; Li, Y.; Zhao, W.; Yin, G. Nickel/Brønsted acid dualcatalyzed regio- and enantioselective hydrophosphinylation of 1,3dienes: access to chiral allylic phosphine oxides. *Chem. Sci.* **2022**, *13*, 1390–1397.

(10) Zhang, Y.-Q.; Han, X.-Y.; Wu, Y.; Qi, P.-J.; Zhang, Q.; Zhang, Q.-W. Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. *Chem. Sci.* **2022**, *13*, 4095–4102.

(11) Yang, Z.; Wang, J. Enantioselective Palladium-Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Access to Chiral Allylic Phosphine Oxides. *Angew. Chem., Int. Ed.* **2021**, *60*, 27288–27292.

(12) Zhou, J.; Meng, L.; Lin, S.; Cai, B.; Wang, J. Palladium-Catalyzed Enantio- and Regioselective Ring-Opening Hydrophosphinylation of Methylenecyclopropanes. *Angew. Chem., Int. Ed.* **2023**, *62*, No. e202303727.

(13) (a) Krespan, C. G.; Petrov, V. A. The Chemistry of Highly Fluorinated Carbocations. *Chem. Rev.* 1996, 96, 3269-3302.
(b) Olah, G. A.; Mo, Y. K. Organic fluorine compounds. XXXIII. Electrophilic additions to fluoro olefins in superacids. *J. Org. Chem.* 1972, 37, 1028-1034.

(14) Mae, M.; Hong, J. A.; Xu, B.; Hammond, G. B. Highly Regioselective Synthesis of *gem*-Difluoroallenes through Magnesium Organocuprate $S_N 2$ ' Substitution. *Org. Lett.* **2006**, *8*, 479–482.

(15) Fuchibe, K.; Ueda, M.; Yokota, M.; Ichikawa, J. γ -Selective Addition to 1,1-Difluoroallenes: Three-component Coupling Leading to 2,2-Disubstituted 1,1-Difluoroalkenes. *Chem. Lett.* **2012**, *41*, 1619–1621.

(16) Fuchibe, K.; Abe, M.; Sasaki, M.; Ichikawa, J. Gold-catalyzed electrophilic activation of 1,1-difluoroallenes: α - and γ -selective addition of heteroatom nucleophiles. *J. Fluor. Chem.* **2020**, 232, 109452.

(17) (a) Wang, C.-Q.; Li, Y.; Feng, C. Sterically congested boronate and silane synthesis via electronically controlled protoboration and protosilylation. *Cell. Rep. Phys. Sci.* **2021**, *2*, 100461. (b) Shan, C.-C.;

Dai, K.-Y.; Zhao, M.; Xu, Y.-H. Copper Catalyzed Protosilylation/ Protoborylation of *gem*-Difluoroallenes. *Eur. J. Org. Chem.* **2021**, 2021, 4054–4058.

(18) Han, X.; Wang, M.; Liang, Y.; Zhao, Y.; Shi, Z. Regio- and enantioselective nucleophilic addition to *gem*-difluoroallenes. *Nat. Synth.* **2022**, *1*, 227–234.

(19) Wang, C.-Q.; Li, Z.-Q.; Tian, L.; Walsh, P. J.; Feng, C. Electronically controlled regioselective hydroarylation of gemdifluoroallenes. *Cell. Rep. Phys. Sci.* **2022**, *3*, 101117.

(20) Li, Y.-y.; Gao, B. Rhodium-Catalyzed Enantioselective *N*-Allylation of Sulfoximines. *Org. Lett.* **2023**, *25*, 2756–2760.

(21) Ji, D.; Jing, J.; Wang, Y.; Qi, Z.; Wang, F.; Zhang, X.; Wang, Y.; Li, X. Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. *Chem.* **2022**, *8*, 3346–3362.

(22) Li, Y.-B.; Tian, H.; Yin, L. Copper(I)-Catalyzed Asymmetric 1,4-Conjugate Hydrophosphination of α , β -Unsaturated Amides. J. Am. Chem. Soc. **2020**, 142, 20098–20106.

(23) (a) Lentz, D.; Nickelt, N.; Willemsen, S. Organometallic Chemistry of Fluorinated Allenes. *Chem. Eur. J.* 2002, *8*, 1205–1217.
(b) Dolbier, W. R., Jr Cycloadditions of fluoroallene and 1,1-difluoroallene. *Acc. Chem. Res.* 1991, *24*, 63–69. (c) Domelsmith, L. N.; Houk, K. N.; Piedrahita, C.; Dolbier, W. J., Jr The photoelectron spectrum of 1,1-difluoroallene. On. pi. electron donation and withdrawal by fluorine. *J. Am. Chem. Soc.* 1978, *100*, 6908–6911.