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ABSTRACT: Rh(III)-catalyzed redox-neutral C−H olefination of
aryldiazenecarboxylates has been realized using arylate esters as the
olefinating reagents. This reaction proceeds under mild and redox-
neutral conditions, resulting in integration of C−H activation and
transfer hydrogenation. The chemoselectivity complements that of previously reported rhodium-catalyzed coupling of the same
substrates.

Transition-metal-catalyzed C−H activation has attracted
increasing attention over the past decades.1 Among the

various transition metal complexes, rhodium complexes have
been widely employed as catalysts owing to their high catalytic
reactivity and selectivity, especially in direct C−H functional-
ization of arenes.2 In particular, rhodium catalysis has allowed
olefination of diversified classes of arenes,3 which was
performed (mostly) under oxidative conditions,3a,e,4 redox-
neutral conditions,5 and, occasionally, hydrogen-releasing
conditions,6 depending on the nature of the arene substrates
and the reaction conditions (Scheme 1). While the redox-

neutral or H2-releasing conditions may circumvent the
employment of stoichiometric metal or organic oxidants with
reduced production of metal or organic wastes, there is still
room for improvement regarding the reaction atom economy.
The outstanding performance of Cp*Rh(III) catalysts in

catalytic C−H activation is due to their versatility in promoting
distinct transformations in the catalytic cycle.7 For example,
Rh(III) species have been known for decades to catalyze
transfer hydrogenation8 besides C−H bond activation. Such
functional versatility should streamline the synthesis of
complex structures and be conducive to atom-economic
transformations of arenes. However, these two areas mostly
evolved independently, and the rarity in this regard is probably
ascribed to the poor compatibility of C−H activation and
transfer hydrogenation. A breakthrough was made in 2018 by
the Wang group,9 who reported the first redox-neutral C−H
olefination of ketones using styrenes as olefinating reagents by
Mn−Zn bimetallic synergy (Scheme 1b). Of note, the
hydrogen transfer is intramolecular via the ligand-to-ligand
hydrogen transfer (LLHT) mechanism.10 In the same year, our
group reported the reductive C−C coupling of aniline with
enones,11 which utilized isopropanol as the hydrogen source,
and varying chemoselectivity was realized using rhodium and
iridium catalysts (Scheme 1c).
The rarity of C−H activation en route to intramolecular

transfer hydrogenation inspired us to further explore this
chemistry using Rh(III) catalysis. To this end, we designed
arenes bearing a built-in hydrogen acceptor, and the coupling
with olefin may serve this purpose. We now report the redox-
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Scheme 1. Catalytic Systems via C−H Activation and TH
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neutral coupling of aryldiazenecarboxylates and acrylates via
Rh(III) catalysis.
With this rationale, we designated aryldiazenecarboxylates as

such arenes. Although the C−H activation of these substrates
has been reported by Glorius in annulative coupling with
activated and unactivated olefins (Scheme 1d),12 we
rationalized that the chemoselectivity may be switched to
transfer hydrogenation under proper reaction conditions
(Scheme 1e). We started our investigation by examining the
reaction parameters of the coupling of tert-butyl 2-aryldiazene-
carboxylate 1a with methyl acrylate 2a. The desired product
3aa was indeed isolated in 38% yield when treated with
[Cp*RhCl2]2/AgSbF6, PivOH, and 4 Å-MS in tetrahydrofuran
(Table 1, entry 1). The yield was improved to 46% when the

solvent was switched to 1,2-dimethoxyethane (DME, Table 1,
entry 2). Other acids such as MesCO2H and AcOH were also
examined, which failed to increase the yield of product 3aa
(Table 1, entries 3 and 4). Different amounts of PivOH were
then examined, and a better yield of 58% was realized in the
presence of 8 equiv of PivOH (Table 1, entries 3−6).
Meanwhile, 100 mg of 4 Å-MS were optimal, affording product
3aa in 79% yield. In all cases, no annulative coupling product
was observed. Thus, the conditions in entry 8 were used for
further studies.
To evaluate the generality of this reaction, the scope with

respect to the acrylate ester was first explored under the
optimal conditions (Scheme 2). To our delight, alky, benzyl,
and aryl acrylates all worked well with 1a, affording the desire
hydrazines (3aa−3af) in 59−79% yields. However, a
benzhydryl acrylate 2g reacted only in low yield, indicating
the steric effect of the ester group.
Encouraged by the above results, we next investigated the

scope of aryldiazenecarboxylates with methyl acrylate 2a being
a coupling reagent (Scheme 3). A series of para substituted
phenyldiazene substrates containing electron-donating (Me,
OMe, iPr) groups generally worked well, affording the desired
products in 35−82% yields. However, introduction of electron-

withdrawing groups (F, Br, CF3) led to moderate yields (3da−
3ha).
When F, Cl, and CF3 groups were introduced into the meta

position, the C−H bond cleavage occurred mostly (F) or
exclusively (Br and CF3) at the less hindered site, generating
the corresponding products 3ka−3ma in 33−35% yields. The

Table 1. Optimizations of the Reaction Conditionsa

entry acid/equiv solvent yield (%)b

1 PivOH (2) THF 38
2 PivOH (2) DME 46
3 MesCO2H (2) DME 36
4 AcOH (2) DME <5
3 PivOH (4) DME 41
4 PivOH (6) DME 46
5 PivOH (8) DME 58
6 PivOH (10) DME 57
7 PivOH (8) DME 21c

8 PivOH (8) DME 79d

9 PivOH (8) DME 55e

10 PivOH (8) DME 46f

aReaction conditions: 1a (0.1 mmol), 2a (2.0 equiv), [Cp*RhCl2]2 (4
mol %), AgSbF6 (16 mol %), PivOH (2.0 equiv), 4 Å-MS (0.050g),
solvent (1 mL) under a N2 atmosphere, 35 °C for 24 h. bIsolated
yield. cNo 4 Å-MS. d4 Å-MS (0.100 g). e4 Å-MS (0.150 g). f4 Å-MS
(0.200 g).

Scheme 2. Scope of Acrylic Estersa,b

aReaction conditions: 1a (0.2 mmol), 2 (2.0 equiv), [Cp*RhCl2]2 (4
mol %), AgSbF6 (16 mol %), PivOH (8.0 equiv), 4 Å-MS (200 mg),
DME (2 mL) under N2 atmosphere, 35 °C for 24 h. bIsolated yield
after column chromatography.

Scheme 3. Scope of the Phenyldiazene Carboxylatesa,b

aReaction conditions: 1a (0.2 mmol), 2 (2.0 equiv), [Cp*RhCl2]2 (4
mol %), AgSbF6 (16 mol %), PivOH (8.0 equiv), 4 Å-MS (200 mg),
DME (2 mL) under a N2 atmosphere, 35 °C for 24 h. bIsolated yield
after column chromatography. c∼92% purity (determined by 1H
NMR spectroscopy). dThe r.r. was determined by 1H NMR
spectroscopy.
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coupling of a meta-F substituted substrate led to C−H
functionalization at both ortho sites, and the regioisomeric
products (3ka and 3ka′) were isolated as a mixture.
A variety of ortho-substituents (CH3, F, and Cl) also proved

amenable to the reaction conditions, producing the desired
products 3na−3pa in lower but acceptable yields (39−44%).
These results indicate that the reaction system is sensitive to
the electronic nature and the position of the substituents. The
Et and iPr esters of the phenyldiazenes also proved to be
suitable for this transformation, affording the corresponding
products in 78% and 69% yields, respectively. In addition,
diazenes bearing a disubstituted benzene ring also turned out
to be applicable (3sa−3wa, 35−69%).
To demonstrate the synthetic applications of this reaction, a

scale-up coupling of 1b and 2a was conducted under standard
conditions, from which product 3ba was isolated in 59% yield
(see Scheme 4a). Derivatization reactions have been carried

out to showcase the synthetic applicability. Oxidation of 3aa
under aerobic conditions afforded the corresponding diazene 4
in 90% yield (Scheme 4b). Meanwhile, base treatment of 3aa
followed by methylation and Michael addition afforded the
compound 5 in 78% yield (Scheme 4c).
Several experiments have been carried out to explore the

mechanism of this coupling system. To probe the hydro-
genation of the putative olefinated diazene intermediate, the
coupling of 4-methyl phenyldiazene (1b) and methyl acrylate
(2a) was conducted in the presence of a preolefinated
phenyldiazene 4 (0.3 equiv) under the standard reaction
conditions. NMR and GC analysis indicated that only product
3ba was produced and no 3aa was detected, together with
recovery of the introduced diazene 4 (Scheme 5a). This
control experiment suggests a pathway defined by olefin
insertion, β-H elimination, and subsequent hydrogenation of
the NN bond to be less likely, on the premise that the
putative diazine-olefin species can undergo facile ligand
exchange.
Next, the H/D exchange reaction between 1a and PivOD in

the absence of alkene 2a revealed significant H/D exchange at
the phenyldiazene C(2) and C(6) position (Scheme 5b),
indicating the relevance of C−H bond activation. However, no
H/D exchange was observed in product 3aa when alkene 2a
was present, suggesting that the C−H activation was largely
irreversible in the catalytic system. To further understand the

C−H activation process, the kinetic isotope effect has been
measured based on parallel reactions, and a borderline KIE
value (kH/kD = 1.8) was obtained (Scheme 3c), indicating that
the C−H bond cleavage occurs prior to the RDS, and this
cleavage process only contributes partially to the overall
barrier.
A plausible mechanism is proposed on the basis of our

experimental data and literature precedents (Scheme 6).12

Cyclometalation of 1a with the active catalyst A affords a
rhodacyclic intermediate B, along with generation of an acid
(HX). Subsequent coordination of acrylic ester 2a gives the
intermediate C, which undergoes migratory insertion of the
aryl group into alkene to deliver a seven-membered ring D. An
intramolecular hydrogen transfer together with Rh−N
formation is proposed to give intermediate E. The fact that
poor reactivity and decomposition were observed in the
absence of 4 Å MS may suggest that the adventitious water
weakens the basicity of the azo group (via hydrogen-bonding)
toward subsequent hydrogen abstraction or transfer. Proto-

Scheme 4. Scale-up Synthesis and Derivatization of a
Coupled Product

Scheme 5. Mechanistic Studies

Scheme 6. Proposed Reaction Pathway
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nolysis of the Rh−N bond in intermediate E byPivOH
generates the desired product 3aa with regeneration of the
active catalyst A. We had planned to use deuterated olefins to
probe the mechanism. However, it seems that the lability of the
two NH protons in the products may defy any solid conclusion
toward mechanistic understanding. At this stage we cannot rule
out the possibility of the β-H elimination pathway because our
proposal is based on the assumption of rapid exchange
(coordination/dissociation) of an olefinated diazene inter-
mediate during our mechanistic studies (see Supporting
Information).
In summary, we have realized Cp*Rh(III) catalyzed

coupling of aryldiazenecarboxylates and acrylic esters under
redox-neutral conditions, which provides a new system that
integrates C−H activation and transfer hydrogenation. The
coupling reaction proceeded with a moderate scope, and the
chemoselectivity remained complementary to that previously
reported in the Rh(III) catalyzed coupling of the same
substrates. Further studies of other transfer hydrogenation
systems are underway in our laboratories.
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