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ABSTRACT: Rh(III)-catalyzed C−H activation of N-phenoxya-
cetamides and chemodivergent coupling to alkylidenecyclopro-
panes (ACPs) have been accomplished. With the assistance of the
ring strain of ACPs, the coupling can be transannulative or
nonannulative, delivering 3-ethylidenedihydrobenzofurans or di-
enes, respectively, under different reaction conditions, and the
selectivity is mainly solvent-controlled. All of the reactions proceeded under mild conditions with a good substrate scope and
excellent chemo- and diastereoselectivity.

Metal-catalyzed C−H bond activation has been exten-
sively explored as a step-economy strategy for the facile

synthesis of complex organic structures.1 In particular,
rhodium(III) catalysts have gained significant attention
owing to their high reactivity, selectivity, and compatibility.2

In general, the directing group (DG) and stoichiometric
amounts of external oxidants constitute the most effective and
practical strategy for chemoselective transformations under
oxidative conditions. To address the restriction of the
employment of stoichiometric amounts of external oxidants,
an oxidizing DG has been developed. In addition to their role
of offering a chelating effect, they act as internal oxidants to
enable novel transformations for the construction of highly
valuable structural platforms under mild and simple reaction
conditions.3 Thus oxidizing DGs bearing N−O, N−N, N−S,
and O−O bonds have been widely employed. So far, the O−
NH (electron-withdrawing (EWG)) group has been one of the
most important oxidizing DGs in C−H activation. However,
the coupling partner that reacts with such arenes has been
mostly limited to alkynes, allenes, alkenes, and diazo
compounds, and the coupling pattern is often annulative.1−3

On the contrary, alkylidenecyclopropanes (ACPs) are
readily available olefins with a highly strained ring. They act
as useful building blocks in organic synthesis via ring scission,
affording many important scaffolds.4 Being a special poly-
substituted olefin, ACPs have also attracted great interest in
metal-catalyzed C−H bond activation.5 In 2013, Cui reported
the Rh(III)-catalyzed C−H activation and annulative coupling
of arenes with ACPs for the synthesis of azacycles, where the
ring opening of ACPs only occurred for furan-derived
carboxamides (Scheme 1A).6 In 2018, our group developed
the Rh(III)-catalyzed C−H bond activation of arylnitrones and
azomethine imines, and their oxidative coupling with ACPs
afforded the corresponding bridged azacycles. In these

couplings, the ACPs underwent ring scission to give a 1,3-
diene intermediate, followed by intramolecular [3 + 2] dipolar
addition. Silver acetate was used as an external oxidant for the
catalyst turnover (Scheme 1B).7 Recently, the Shi group
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Scheme 1. Ring Scission of Alkylidenecyclopropanes
(ACPs) in Rh(III)-Catalyzed C−H Activation
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reported the insertion of Rh−H in the 1,3-diene species
generated from the ring opening of ACPs via the C−H
activation process.8 Wang’s group reported the Rh(III)-
catalyzed annulation of N-sulfonyl ketimines and coupling to
ACPs via C−H activation and the formation of allyl species
(Scheme 1C),9 where the nucleophilic Rh−allyl inserts into
the activated imines to give spirocycles. However, the reaction
seems to suffer from the employment of highly reactive imines
and the limited stereoselectivity of the CC bond in the
product. We reasoned that a two-fold substrate activation
strategy by integration of the oxidizing DG-assisted C−H
activation and the scission of ACPs may lead to diverse
selectivity as a result of the interaction of Rh(III) allyl species
and the proximal O−N bond. Herein we report solvent-
controlled divergent access to 3-ethylidenedihydrobenzofurans
and 1,3-dienes via the Rh(III)-catalyzed C−H of N-
phenoxyacetamides and coupling to ACPs (Scheme 1D).
We began our investigation by evaluating the reaction

parameters of the coupling of N-phenoxyacetamide (1a) and
1-(4-tert-butylphenyl)methylenecyclopropane (2a, Table 1).

By using Cp*Rh(OAc)2 as a catalyst, 3-ethylidenedihydro-
benzofuran 3aa was isolated in 42% yield in trifluoroethanol
(TFE) at 35 °C as a result of [3 + 2] transannulation (entry 1).
The geometry of the CC bond in 3aa was determined by
nuclear Overhauser effect (NOE) analysis. A 78% yield was
obtained when K2CO3 was used as a base (entry 2).
Investigation of solvent effect showed that TFE seemed to
be critical for 3aa formation, whereas a diene product 4aa was
produced when a less polar solvent such as toluene,
tetrahydrofuran (THF), or PhCF3 was used (entries 2−5;
for details, see the Supporting Information). The yield of 3aa
was increased to 83% when Na2CO3 was used as a base
(entries 6−10). A higher temperature failed to improve the
yield of 3aa (entry 11). After systematic screening of several

parameters such as the base, the solvent, and the reaction time,
the yield of diene product 4aa could be increased to 82%
(entries 12−16 and the Supporting Information). Thus the
optimal conditions for the synthesis of 3aa (entry 7) and 4aa
(entry 16) have been established with excellent chemo-
selectivity, and no Z/E isomeric product of the CC bond
was detected. Control experiments indicated that the rhodium-
(III) catalyst was essential. It should be noted that the product
3aa underwent aromatization to benzofurans during purifica-
tion, but the aromatized product could be minimized when the
purification was sufficiently rapid.
We next examined the scope and generality of the [3 + 2]

annulation reaction system (Scheme 2). N-Phenoxyamides

with a variety of electron-donating and halogen- and electron-
withdrawing groups at the para position of benzene ring were
fully tolerated (3aa−3aj, 53−83% yield). The reaction also
proceeded smoothly with meta-methyl-substituted phenoxya-
mide (3ak, 71% yield). The introduction of an ortho-Me group
afforded the cyclic product 3al in 62% yield. Moving the arene
to a 2-naphthyl-substituted group also gave the corresponding
product 3am in 79% yield. The ACP substrates with an alkyl,
phenyl, halogen, or CF3 group at different positions reacted
smoothly, affording the 3-ethylidenedihydrobenzofurans in
38−82% yield (3ba−3bh). In all cases, excellent chemo-
selectivity was obtained. In contrast, a 1,1-disubstituted ACP
and a 1-alkyl-substituted ACP both failed to give the desired
products under the present conditions.
The generality of the dienes synthesis was next explored

(Scheme 3). The introduction of methyl, tert-butyl phenyl,
halogen, ester, and CF3 groups at the para position of the
benzene ring afforded the desired diene products in moderate
to high yields (4aa−4ai, 62−82% yield). The coupling also
proceeded well when a meta-methyl, ortho-methyl, or an ortho-
chloro group was present in the benzene ring (4aj−4al, 49−
72% yield). The corresponding 2-naphthyl-substituted product
was obtained in 53% yield (4am). A series of 1-aryl-

Table 1. Optimization Studiesa

entry solvent additive yield 3aa (%) yield 4aa (%)

1 CF3CH2OH 42 nd
2 CF3CH2OH K2CO3 78 nd
3 toluene K2CO3 nd 36
4 PhCF3 K2CO3 nd 27
5 THF K2CO3 nd 45
6 CF3CH2OH KOAc 64 nd
7 CF3CH2OH Na2CO3 83 nd
8 CF3CH2OH Cs2CO3 80 nd
9 CF3CH2OH CsOAc 68 nd
10 CF3CH2OH NaOAc 73 nd
11b CF3CH2OH K2CO3 73 nd
12c EtOH K2CO3 nd 9
13c tAmOH K2CO3 nd 72

14c tAmOH CsOAc nd 81

15c DCE CsOAc nd nd
16c THF CsOAc nd 82

aReaction conditions: 1a (0.2 mmol), ACP 2a (0.4 mmol),
Cp*Rh(OAc)2 (5 mol %), additive (2 equiv), CF3CH2OH (2.0
mL), 35 °C, 24 h, isolated yield. b40 °C. c48 h.

Scheme 2. Scope of [3 + 2] Annulation Reactiona

aReaction conditions: 1 (0.2 mmol), ACP 2 (0.4 mmol), Cp*Rh-
(OAc)2 (5 mol %), Na2CO3 (2.0 equiv), CF3CH2OH (2.0 mL), 35
°C, 24 h, isolated yield. bHFIP was used as solvent, 60 °C.
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methylenecyclopropanes were also tolerated, with the isolation
of the diene products 4ba−4bk in 51−86% yields.
The synthetic utility has been briefly demonstrated (Scheme

4). The coupling system was scaled up to the gram scale with 3

mol % catalyst loading, giving the cyclic product 3aa in 73%
yield. The treatment of 3ad with p-toluenesulfonic acid
afforded benzofuran 5 in 86% yield.10 The structure of 5 has
been confirmed by X-ray crystallography (CCDC 2061745).
The reduction of 3aa in the presence of Raney-Ni by H2 (1
atm) gave the corresponding cis-substituted dihydrofuran
product 6 in 46% yield as the sole diastereomer. The Diels−
Alder reaction of 1,3-diene 4aa and diethyl acetylenedicarbox-

ylate proceeded smoothly to give the cyclohexadiene adduct 7
in 45% yield, which is a useful synthetic building block.
We next performed a series of experiments to probe the

reaction mechanism (Scheme 5). The kinetic isotope effect

(KIE) was measured to be 1.6 under the annulative conditions
and 1.8 under the nonannulative conditions, which indicates
that C−H cleavage is probably not the turnover-limiting step
in either system (Scheme 5a).11 Moreover, when CF3CD2OD
was used as the solvent in the reaction of 1c and 2a, the ortho
position of the cyclic product 3ca-dn was heavily deuterated. In
addition, D2O was added to the reaction of 1c with 2a under
diene-forming conditions. The starting material 1c-dn was
recovered with 28% deuteration at the ortho positions of the
N-phenoxyacetamide, and the diene product 3ca was 22%
deuterated at the ortho position (Scheme 5b). These results
suggest the reversibility of the C−H activation under both
catalytic conditions
A proposed reaction pathway is given in Scheme 6.

Rhodacyclic intermediate B is formed through the C−H
activation of 1a; then, the Rh−aryl bond migratorily inserts
into the double bond of 2a to provide the alkyl intermediate C,
which is proposed to undergo β-C elimination and ring
scission to produce a Rh(III) homoallyl species D. The
subsequent β-H elimination provides a diene intermediate E
together with a rhodium(III) hydride intermediate.2,12 In the
case of the TFE solvent, the Rh(III)−H bond inserts into the
diene species E to give an allyl intermediate G.9,13 The
subsequent C−O reductive elimination or nucleophilic
substitution of intermediate G is proposed to generate a
Rh(I) species together with H. The N−O bond of H then
oxidatively adds to the Rh(I) species, and subsequent
protonation furnishes the final annulated product 3aa with
regeneration of the active catalyst. The stereochemistry of the
3aa is dependent on the structure of the allyl species.
Alternatively, the Rh−H species, which is a direct precursor
to a Rh(I) species, could be oxidized by the O−NHAc bond of
E to give the intermediate F without Rh(III)−H insertion to
the diene. Finally, protonolysis of the intermediate F gives the
product 4aa. The fate of the Rh(III) hydride species is strongly
solvent-dependent. In the case of the TFE/HFIP (hexafluor-
oisopropanol) solvent, it is likely that the acidity of the solvent
contributes to stabilization of Rh−H by inhibiting its reversible

Scheme 3. Scope of the Diene Productsa

aReaction conditions: 1 (0.2 mmol), ACP 2 (0.4 mmol), Cp*Rh-
(OAc)2 (5 mol %), CsOAc (2 equiv), THF (2.0 mL), 60 °C, 48 h,
isolated yield. b35 °C.

Scheme 4. Gram-Scale Synthesis and Derivatization
Reactions

Scheme 5. Mechanistic Studies
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deprotonation. In addition, Rh−H may also be stabilized by
hydrogen bonding with such a solvent.
In summary, we have developed an operationally simple

method to divergently access 3-ethylidenedihydrobenzofurans
and dienes through the Rh(III)-catalyzed C−H/C−C cleavage
of N-phenoxyacetamides and ACPs. The reactions featured
mild reaction conditions, a broad substrate scope, and excellent
chemoselectivity. We also demonstrated the synthetic utility of
the products with some derivatization reactions. Further
studies of the enantioselective synthesis of the chiral 3-
ethylidenedihydrobenzofurans are currently under way in our
laboratories.
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