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Highlights
Atropisomerism has been recognized as
a unique skeleton in bioactive natural
products, privileged ligands and cata-
lysts, and material science.

Due to the high reactivity and versatility
of metal carbenes, transition-metal-
catalyzed enantioselective carbene
transformations provide a highly effec-
tive strategy to realize the extraordinary
stereocontrol of axial chirality under rel-
Atropisomerism is a prominent stereochemical behavior arising from the re-
stricted rotation around a σ bond, which has been recognized as a unique skel-
eton in bioactive natural products, privileged ligands and catalysts, andmaterials
science. In the past decade, the synthesis of atropisomers has witnessed a
booming development. In this regard, catalytic enantioselective carbene trans-
formation reactions provide an effective strategy to realize the extraordinary
stereocontrol of axial chirality due to the versatility and high reactivity of metal
carbenes. This review highlights advances in transition-metal-catalyzed asym-
metric carbene transformation reactions towards atropisomers, focusing on
the mechanistic classes of axial chirality generation.
atively mild conditions.

The diverse atropisomeric products ob-
tained from enantioselective carbene
transformation provide a convenient
platform to afford effective ligands and
catalysts in asymmetric catalysis and
are used as a key step for quick synthe-
sis of the atropisomeric natural product
(−)-isoplagiochin D.

Atropisomerism is a prominent
stereochemical behavior arising from
the restricted rotation around a σ
bond, which has been recognized as
a unique skeleton in bioactive natural
products, privileged ligands and
catalysts, and materials science. In
the past decade, the synthesis of
atropisomers has witnessed a
booming development. In this regard,
catalytic enantioselective carbene
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Introduction to atropisomers
A unique manifestation of molecular chirality, atropisomerism is the consequence of hindered
rotation around a σ bond, which was first correctly recognized by Christie and Kenner in 1922.
Atropisomers, especially axially chiral biaryls, exist widely in natural products and bioactive
molecules. For instance, (−)-steganacin bearing an (M)-configuration at the biaryl axis exhibits
significant cytotoxicity, a marked inhibitory effect on tubulin assembly, and in vivo antitumor activity
(Figure 1A, Key figure) [1–5]. Atropisomers are also the core skeletons of numerous privileged
ligands and catalysts known as BINOL (1,1′-binaphthyl-2,2′-diol), BINAP [2,2′-bis
(diphenylphosphino)-1,1′- binaphthyl], chiral phosphoric acids (CPAs), etc. [6–8]. In addition, they
have been applied to material science, such as in host–guest chemistry and as fluorescent sensors
[9–12]. In the past few decades, especially the past decade, remarkable progress has beenmade in
the catalytic asymmetric synthesis of atropisomerically chiral compounds, and a variety of elegant
strategies, including oxidative coupling and cross-coupling, de novo (hetero)arene synthesis,
desymmetrization (see Glossary), and (dynamic) kinetic resolution, have been developed
(Figure 1B) [13–26]. The means to realize these strategies include transition-metal catalysis and
organocatalysis.

Transition-metal-catalyzed carbene transformation reactions have been well established in
modern organic synthesis due to the versatility and high reactivity of metal carbenes [27–32].
In the past decades, catalytic asymmetric carbene transformations to generate central chirality
have progressed remarkably [33–35]. By sharp contrast, significant advances in the synthesis
of axially chiral atropisomers by enantioselective carbene transformations have been made only
more recently, largely due to the inherent steric hindrance that needs to be overcome to con-
struct the stable axis, resulting in deterioration of the metal-carbene intermediate. Neverthe-
less, these encounters have been addressed, benefiting from the outstanding protocols,
which in turn has attracted increasing attention to these carbene strategies. According to the
reported examples, two classes of chiral induction can be summarized to realize axial chirality
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Figure 1. (A) Representative atropisomers in various scientific disciplines. (B) Elegant strategies to construct axial chirality
(C) Classes of chiral induction for the synthesis of atropisomers via transition-metal-catalyzed asymmetric carbene
transformations. Abbreviations: BINAP, [2,2′-bis(diphenylphosphino)-1,1′- binaphthyl]; BINOL, (1,1′-binaphthyl-2,2′-diol)
CPA, chiral phosphoric acid; QUNAP, [1-(2-(diphenylphosphaneyl)naphthalen-1-yl)isoquinoline].
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transition-metal-catalyzed asymmetric
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Glossary
β-Hydride elimination: the process by
which an alkyl group bonded to a metal
center and with a hydrogen atom in the
metal center can be converted to an
alkene and a metal hydride.
Atropo-enantioselective: an
enantioselective reaction with the
formation of a configurationally stable
chiral axis.
Chirality transfer: the process of
transferring one form of chirality
(e.g., central chirality, planar chirality,
axial chirality, helical chirality) to another
form.
Desymmetrization: an
enantioselective reaction accessing
enantiomerically enriched molecules
from prochiral or mesocompounds.
Dynamic kinetic resolution: the
process of transforming only one
configuration of racemic substrates into
only one configuration of
enantiomerically enriched products.
Kinetic resolution: the process of
transforming one configuration of
racemic substrates into corresponding
enantiomers.
Migratory insertion: the process of
inserting one ligand of ametal center into
another metal–ligand bond.
construction (Figure 1C). In general, a transient quaternary carbon center intermediate bearing
a C–metal bond is firstly generated via intramolecular migratory insertion of metal carbene
into σ bonds (class a) or by intermolecular nucleophilic addition of electron-rich (hetero)arenes
towards the metal-carbene pathway (class b). Then, the configurationally stable axis is fixed via
central-to-axial chirality transfer accompanied by C=C bond formation or an aromatization
process [36–39]. This review is classified into three parts depending on the mechanisms of axial
chirality generation.

Intramolecular metal-carbene migratory insertion pathway (class a)
The intramolecular migratory insertion mechanism for metal carbene to access atropisomers is
achieved by palladium (Pd)(0), rhodium (Rh)(III), and iridium (Ir)(III) catalysis. Commonly, all of
these reactions proceed through: (i) the formation of an aryl metal species (oxidative addition
for Pd, C–H activation for Rh and Ir); (ii) reaction of the aryl metal with a diazo compound (gener-
ated from N-tosylhydrazones for Pd, 1-diazonaphthoquinones for Rh and Ir) to form an aryl metal
carbene; (iii) intramolecular migration insertion; and (iv) atropisomeric axis-forming demetallation
(β-hydride elimination for Pd, proton-transfer-mediated aromatization for Rh and Ir).

Pd/carbene involving migratory insertion and β-hydride elimination reactions
Pd-catalyzed carbene transformation reactions involving migratory insertion and β-hydride elim-
ination have been widely studied since Van Vranken’s seminal work in 2001 [40]. However, stud-
ies on the asymmetric catalysis in such types of reaction have received less attention because a
new chiral center cannot be generated in the process [41].

Gu and Feng anticipated that atropisomeric styrene skeletons can be generated when C=C
bonds are formed under certain circumstances. However, compared with axially chiral biaryls,
this styrene atropisomerism exhibited lower stability due to the less rigid skeletons, which ren-
dered effective stereocontrol more challenging [42]. A Pd-catalyzed atropo-enantioselective
carbene migratory insertion reaction was first achieved in 2016 (Figure 2A) [43]. Axially chiral
vinyl arenes 3 were obtained from aryl bromides 1 with N-tosylhydrazones 2 by employing
TADDOL-derived phosphoramidite L1. A proposed catalytic cycle is shown in Figure 2A.
Arylpalladium specie A was generated from the oxidative addition reaction of Pd(0) with aryl bro-
mide 1a, which then reacted with the diazo compound B (generated in situ from hydrazone 2a in
the presence of tBuOLi) to form the Pd carbene intermediate C with the release of N2. Migration/
insertion of C afforded D with a quaternary carbon center, and then β-hydride elimination oc-
curred to access the desired vinylarene atropisomer 3a. However, a low level of asymmetric in-
duction was observed when a substrate with diethyl phosphonate was used, suggestive of the
existence of a π–π interaction between the phenyl ring of the phosphine oxide and the
tetrahydronaphthalene moiety in either intermediate C or D. In Wu’s further related studies, sub-
strates were further extended to alkoxyl-substituted phosphine oxides and N-tosylhydrazones
with five- or six-membered rings by utilizing P-stereogenic chiral phosphine BI-BOP ligand
L2, in 2017 (Figure 2B) [44]. However, asymmetric induction of a seven-membered ring N-
tosylhydrazone remained challenging, albeit the target product was obtained in good yield.

Rh(III) or Ir(III)/carbene involving migratory insertion and aromatization reactions
Relying on significant breakthroughs in the synthesis of novel chiral cyclopentadienyl (Cp) li-
gands [45–56], CpxM(III)-catalyzed enantioselective C–H arylation through migratory insertion
reactions of metal carbenes provide a straightforward approach for the synthesis of axially chi-
ral (hetero)biaryls. In such types of reactions, metal carbene is generated from the directed C–H
activation and sequential denitrogenation of 1-diazonaphthoquinones by the CpxM(III) com-
plex. After migratory insertion with the initial formation of central chirality, the protonation for
686 Trends in Chemistry, September 2023, Vol. 5, No. 9
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Figure 2. Pd-catalyzed atropo-enantioselective carbene transformations for the synthesis of vinylarene
atropisomers (A,B). See [43,44]. Abbreviations: ee, enantiomeric excess; Ts, 4-toluenesulfonyl.
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aromatization process occurs with the accomplishment of a locked chiral axis formation. This
strategy strongly relies on the utilization of sterically hindered diazo reagents (Figure 3A).

An unprecedented example of a CpRh(III)-catalyzed atroposelective carbene migratory insertion
reaction was achieved by the group of Waldmann and Antonchick in 2017, by an amide-directed
C–H arylation of benzamides 4with 1-diazonaphthoquinones 5 (Figure 3B) [57]. With a newly de-
veloped piperidine-fused cyclopentadienyl rhodium complex JasCpRh (Rh1), a variety of axially
chiral biaryls 6 could be obtained with excellent enantioselectivity [up to 91% enantiomeric excess
(ee)]. Benzamides bearing various electron-rich substituents in themeta position and various sub-
stituents at the 3-position of 1-diazonaphthoquinones were compatible in this reaction. In 2020,
Li and coworkers disclosed the synthesis of conformationally metastable biaryl intermediate 7
from the reaction of monosubstituted arene substrate (nitrone) with 1-diazonaphthoquinone
compound 5 enabled by Cramer’s chiral CpRh(III) catalysts Rh4 (Figure 3C) [58]. Subsequently,
the group of Waldmann and Antonchick realized the synthesis of the five-membered-ring axially
(benzo)furano, axially (benzo)thiopheno, and indolo atropisomer 8 with a C(3)–C chiral axis, in up
to 96% yield and 94% ee (Figure 3D) [59]. Furthermore, in view of the significant effect on the re-
activity and selectivity of the substituents on the Cp ring, the You group developed a new class of
Trends in Chemistry, September 2023, Vol. 5, No. 9 687
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binaphthyl ‘O’-linked chiral cyclopentadienyl ligands (BOCp) in 2021 (Figure 3E) [60]. In an
enantioselective migratory insertion process for benzo[h]quinolines with 1-diazonaphthoquinones 5,
BOCp displayed much greater catalytic efficiency than the well-studied ‘C’-linked chiral Cp [61],
affording atropisomeric heterobiaryls 9 in up to 99% yield and 97% ee. The reaction was compatible
with substituted 1-diazonaphthoquinones at the 3-, 6-, or 7-position, regardless of the steric
or electronic properties. In 2022, catalytic atroposelective C7 arylation of indolines and indoles with
1-diazonaphthoquinones 5 was achieved by using Rh3, reported by the group of Waldmann
under mild conditions (Figure 3F) [62]. Afterwards, the You group accomplished catalytic
atroposelective C2 arylation of indoles with 1-diazonaphthoquinones 5 by employing SCpRh (Rh4),
affording axially chiral indole-based frameworks 11 in good yields with excellent enantioselectivity
(Figure 3G) [63]. At the same time, Li and coworkers explored the reaction of thioether-directed
atroposelective C8-arylation of 1-naphthyl thioether with 1-diazonaphthoquinones 5 (Figure 3H) [64].

In addition to 1-diazonaphthoquinone compounds, other sterically hindered carbene precursors
were explored for the synthesis of atropisomers in such a carbene strategy. For example, in 2022,
N-sulfonyltriazoles 14were first employed as arylating reagents for the construction of atropisomeric
2-naphthylamine derivatives 15, reported by the groups of Kong and Li (Figure 4) [64].

Compared with the achievements attained via CpRh(III)-catalyzed atroposelective carbene trans-
formations, studies on Ir-catalyzed systems have received less attention. An impressive example
in Ir-catalyzed enantioselective synthesis of atropisomers through a carbene migratory insertion
reaction was reported by the Cramer group in 2018 (Figure 5) [65]. Axially chiral biaryl phosphine
oxides 17 with point chirality at phosphorus were obtained by an Ir(III) complex (Ir1) bearing an
atropochiral cyclopentadienyl ligand in cooperation with chiral amino acid CCA1 in up to 96%
yield, 98% ee, and >20:1 diastereomeric ratio (dr). Control experiments confirmed that the car-
boxylic acid additive was crucial in achieving the higher reactivity and enantioselectivity.

As shown above, CpxM(III)-catalyzed asymmetric carbene transformation reactions have made out-
standing progress for the synthesis of atropisomers. Nevertheless, tedious synthetic procedures for
chiral Cp might impede their practical applications. Future studies should be encouraged to design
and synthesize more synthetically available chiral cyclopentadienyl ligands and their complexes.

Intermolecular nucleophilic addition of electron-rich (hetero)arenes towards
metal-carbene pathway (class b)
In the past decades, chiral dirhodium tetracarboxylates stood out as privileged catalysts in asym-
metric reactions [66,67]. Rh(II)-catalyzed asymmetric N–H or C–H of electron-rich arene insertion
reactions provide another successful approach for the synthesis of atropoisomers. Different from
carbene transformation pathways for migratory insertion, intermolecular nucleophilic addition to
metal carbene is exhibited in such types of reactions (Figure 6A).

Inspired by the work on catalytic asymmetric carbene insertions into N−H bonds [68,69], the
Wang group reported a Rh(II)-catalyzed atroposelective N−H insertion (NHI) reaction of
indolocarbazoles 18 with 1-diazonaphthoquinones 5 in 2021 (Figure 6B) [70]. Phthalimido-
derived dirhodium catalyst Rh2(S-PTAD)2 proved crucial to achieve high enantioselectivity, and
Figure 3. CpRh-catalyzed atropo-enantioselective carbene transformations of 1-diazonaphthoquinones (A
with benzamides (B), a nitrone compound (C), (benzo)furans, (benzo)thiophenes, and indoles to construct a
C(3)–C chiral axis (D), benzo[h]quinolones (E), indolines and indoles to construct a C(7)–C chiral axis (F)
indoles to construct a C(2)–C chiral axis (G), and 1-naphthylthioethers (H). See [57–60,62–64]. Abbreviation: ee
enantiomeric excess.
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Figure 4. CpRh-catalyzed atropo-enantioselective carbene transformations with N-sulfonyltriazoles as
arylation reagents. See [64]. Abbreviation: ee, enantiomeric excess.
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various axially chiral N-arylindolocarbazoles 19were obtained in up to 75% yield and 99% ee. It is
worth mentioning that this work provides an alternative strategy to construct axially chiral
heterobiaryls bearing an C−N axis by the direct formation of a new C−N bond. Afterwards, the
groups of Yu and Sun successfully preparedN-arylindoles andN-arylcarbazoles 20with excellent
ee values (up to 98% ee) by this rhodium-catalyzed NHI reaction likely to be via a concerted pro-
cess (Figure 6C) [71]. In 2021, the groups of Zhang and Sun realized a Rh(II)-catalyzed asymmet-
ric C–H bond insertion reaction for electron-rich arenes for the synthesis of biaryl atropisomers 21
enabled by the 1,8-naphthalimido-derived dirhodium catalyst Rh2(S-NTTL)4 (Figure 6D) [72].
Subsequently, the Sun group successfully applied this method to the catalytic atroposelective
C2 arylation of indoles with 1-diazonaphthoquinones 5, affording axially chiral indole-based
frameworks 22 in up to 80% yield and 98% ee (Figure 6E) [73].

Other classes of chiral induction for the synthesis of atropisomers via
metal-carbene transformations
In addition to the two classes of asymmetric induction mentioned earlier, there are several other
classes for the synthesis of atropisomers via metal-carbene transformations. Although these re-
actions undergo intramolecular metal-carbene migratory insertion or an intermolecular nucleo-
philic addition mechanism, metal-carbene transformation steps are not involved in the
construction of the atropisomeric C−C bond. For example, in 2020 Gu and Xi locked a flexible
C−C atropisomeric axis of the substrate 23 to access the strained macrocyclic olefin 24 by utiliz-
ing the ligand WingPhos L3, which could be a key step to furnish the synthesis of the
atropisomeric natural product (−)-isoplagiochin D (25) (Figure 7A) [74]. Later, the construction
of atropisomeric heterobiaryl styrenes 28 was achieved by a Pd-catalyzed dynamic kinetic
TrendsTrends inin ChemistryChemistry

Figure 5. Cramer’s CpIr/CCA-catalyzed atropo-enantioselective C–H arylation of phosphine oxides with
1-diazonaphthoquinones. See [65]. Abbreviation: ee, enantiomeric excess.
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Figure 6. Rh(II)/carbene-involved nucleophilic addition and aromatization reactions. (A) Generally plausible
reaction pathway. (B,C) Rh(II)-catalyzed N−H insertion reaction of 1-diazonaphthoquinones with indolocarbazoles, or
N-arylindoles and N-arylcarbazoles. (D,E) Rh(II)-catalyzed formal C−H insertion of electron-rich arenes, or indole.
See [70–73]. Abbreviation: ee, enantiomeric excess.

Trends in Chemistry
asymmetric coupling (DYKAT) reaction by means of racemic heterobiaryl bromides 26 with
carbene precursors 27 via a five-membered labile carbenoid intermediate, reported by the
group of Fernández and Lassaletta (Figure 7B) [75]. In 2022, the Li groups have extended the
range of diazo reagents to α-diazo β-ketoester compounds 30 bearing a flexible C−C axis, to
Trends in Chemistry, September 2023, Vol. 5, No. 9 691
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Figure 7. Other classes of chiral induction for the synthesis of atropisomers viametal-carbene transformations
(A) Locking the existing flexible atropisomeric C−C axis of substrates. (B) Locking the existing flexible atropisomeric C−C axis
of intermediates. (C) Conversion of a flexible C−C axis in α-diazo β-ketoesters into a biaryl axis. (D) Sigma-bond metathesis
See [74–77]. Abbreviations: ee, enantiomeric excess; Ts, 4-toluenesulfonyl.
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Table 1. Summary of transition-metal-catalyzed atropo-enantioselective carbene transformations

Intramolecular metal-carbene migratory insertion pathway Intermolecular nucleophilic addition to metal-carbene pathway

Carbene precursor Substrate Transition metal Refs Carbene precursor Substrate Transition metal Refs

Pd [43]
[44]

Rh2(S-PTAD)4 [70]

JasCpRh [57] Rh2(S-NTTL)4 or Rh2(S-PTTL)4 [71]

JasCpRh [59] Rh2(S-NTTL)4 [72]

JasCpRh [62] Rh2(S-PTTL)4 [73]

BOCpRh [60] Other classes of chiral induction

Cramer’s CpRh [64] Carbene precursor Substrate Transition metal Refs

SCpRh [63] Pd [74]

Cramer’s CpRh [58] Pd [75]

SCpRh [64] Cramer’s CpRh [76]

Cramer’s CpIr [65] SCpRh [77]

Trends in Chemistry
obtain atropisomeric phenanthrenes 31 (Figure 7C) [76]. In this reaction, the C−C bond present in
the α-diazo β-ketoesters converted into the configurationally stable biaryl axis. Recently, the
groups of Huang, Crabtree, and Li reported a solvent-dependent enantiodivergent reaction
with imidoyl sulfoxonium ylides 32 as effective partners for the synthesis of C−N axially chiral
isoquinolones 34 (Figure 7D) [77]. Experimental and computational studies revealed sigma-
bondmetathesis as an enantiodetermining step, where the Rh carbene is not involved in the con-
struction of the atropisomeric axis or in the asymmetric induction step.
Trends in Chemistry, September 2023, Vol. 5, No. 9 693
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Outstanding questions
How can we design structurally diverse
carbene precursors for diverse
atropisomeric products?

Is it possible to synthesize atropisomers
beyond C–C axial chirality (e.g., C–O,
C–S, or C–B bond) by the carbene
strategy?

Is it possible to realize catalytic
enantioselective carbene transformations
towards atropisomers by utilizing
abundant and cheaper first-row transition
metals (e.g., Fe, Ni, Cu)?

Can a desymmetrization strategy be
applied for transition-metal-catalyzed
asymmetric carbene transformation
reactions to access atropisomers?

Will catalytic atropo-enantioselective
carbene transformations become a
commonly convenient strategy to ob-
tain effective chiral ligands and cata-
lysts that are currently difficult to
obtain?

How can catalytic atropo-
enantioselective carbene transforma-
tions be widely used as effective strate-
gies in the synthesis of atropisomeric
natural products and drug molecules
in chembiology?
Concluding remarks and future perspectives
Transition-metal-catalyzed atropo-enantioselective carbene transformation reactions have prog-
ressed rapidly due to the increasing attention on atropisomers and the fast development of chiral
ligands and catalysts. Hence, we summarize the advances in transition-metal-catalyzed atropo-
enantioselective carbene transformations focusing onmechanistic classes of axial chirality gener-
ation (Table 1). Compared with traditional synthetic approaches, relatively mild conditions are
commonly employed in the asymmetric carbene transformation strategy, resulting in extraordi-
nary stereocontrol of axial chirality. In this context, axially chiral vinyl arenes, (hetero)biaryls,
ring-strained macrocyclic biaryls, N-arylindoles, and N-arylindolocarbazoles are obtained.

Despite the significant achievements so far, catalytic atropo-enantioselective carbene transforma-
tions remain in their infancy (see Outstanding questions). For example, 1-diazonaphthoquinone
compounds as sterically hindered arylation reagents are strongly required in the current research,
so structurally diverse carbene precursors remain to be explored based on the mechanistic under-
standing of asymmetric induction. Second, much attention is currently concentrated on the con-
struction of atropisomers bearing C–C bonds, so the design and synthesis of atropisomers
beyond C–C axial chirality, such as C–O, C–S, or C–B bonds, is in great demand. Third, instead
of the noble metals Pd, Rh, and Ir, Earth-abundant and cost-friendly first-row transition metals
such as Fe, Ni, and Cu may be highly worth trying in catalytic atroposelective carbene transfor-
mations. Fourth, desymmetrization has been proven a reliable strategy in asymmetric catalysis
[78–81]. How to apply desymmetrization strategies to transition-metal-catalyzed atropo-
enantioselective carbene transformations will be an attractive topic. In addition, catalytic
enantioselective carbene transformations towards atropisomers is not yet a common strategy
for the synthesis of chiral ligands and catalysts. How to design more effective axially chiral li-
gands and catalysts, especially those that are currently difficult to obtain, based on these
new methods will be another important direction of development in this field. Encouraged by
the pioneering work on Pd-catalyzed asymmetric macrocyclization reactions as a key step to-
wards atropisomeric (−)-isoplagiochin D, the development of more effective catalytic systems
to construct atropisomeric natural products and medicinal molecules especially in
chembiology are highly expected, starting from suitable substrates and carbene precursors.
It is our hope that this review will encourage future studies to address the outstanding synthesis
challenges and that the development of more efficient synthesis of atropisomers taking advan-
tage of catalytic atropo-enantioselective carbene transformations will continue to grow.
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