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Rhodium(lll) catalysis has set the stage for a plethora
of oxidative C-H functionalizations over the last
decade, which have predominantly employed stoi-
chiometric amounts of toxic and expensive metal
oxidants, such as silver(l) salts. In the meantime, elec-
trosynthesis has emerged as an increasingly viable
alternative for expensive and toxic oxidants. Recently,
significant momentum has been achieved with the
merger of electrocatalysis with organometallic C-H
activation. However, user-friendly and robust
rhodaelectro-catalysis has until very recently proven
elusive for oxidative C-H activations. This minireview
highlights the current knowledge and recent advances
of electrooxidation in rhodium-catalyzed C-H or C-C
activations, with a topical focus on contributions from
the Ackermann group through July 2020.

Introduction

Organometallic C-H activation has emerged as one of the
most efficient tools for molecular synthesis.™® Particular-
ly, rnodium(lll) catalysis has received notable attention
for the development of oxidative C-H functionaliza-
tions."™® Despite considerable advances, rhodium(lll)-
catalyzed oxidative C-H activations heavily rely on stoi-
chiometric amounts of toxic and/or expensive copper(ll)
and silver(l) salts as sacrificial oxidants.”? In the mean-
time, electrocatalysis has been identified as an increas-
ingly viable strategy for organometallic C-H activations
over the last decade.?*® While general reviews and
reports on metallaelectro-catalysis have appeared,®>°
a focus on state-of-the-art rhodaelectro-catalyzed trans-
formations is not yet available,t®® despite its unique
potential for molecular syntheses, pharmaceutical indus-
tries, and material sciences.f?® Herein, we discuss
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recent developments of rhodaelectro-catalyzed trans-
formations with specific interests on mechanistic
aspects. Thus, we specifically summarize our findings on
rhodaelectro-catalyzed C-H and C-C activations, which
provide a number of useful molecular structures and,
more importantly, reveal new synthetic disconnections.
Overall, rhodaelectro-catalyzed C-H/C-C activations
have set the stage for molecular syntheses with unique
levels of resource economy.®®

Rhodaelectro-Catalyzed C-H
Alkenylation

In 2018, a key breakthrough in rhodaelectro-catalyzed
C-H activation was established by the Ackermann
group (Géttingen, Germany) (Scheme 1).°7 Hence,
cross-dehydrogenative C-H/C-H alkenylation was


mailto:Lutz.Ackermann@chemie.uni-goettingen.de
https://doi.org/10.31635/ccschem.020.202000365

@CCS

MINI REVIEW

Chemistry

[Cp*RhCl5], (2.5 mol %)

el o

t-AMOH/H,0 (3/1)

KOAc

100 °C, 5-18 h

undivided cell, CCE at 4.0 mA

o} 0
R
o} O
R
CO2nBU COgnBU

R = Me (3¢): 75%

R = Me (3¢): 78%

R=F 3b): 50% R = CF, (3d): 60% R = Ph (3f): 75%
Me o)
Ph
(@) o 0 o
M O
e
o) O 0
COnBu CO,nBu O\\\
OH
3g: 73% 3h: 77% 3i: 55%
Me Ie)
O
O
Me
O,
Me
Me
3j: 76% 3k: 67%
WCOanU o)
Me
’\5\ N-Me | ©
N
N/ N\
\§) CO,nBu CO.nBu
3l: 50% 3m: 51% 3n: 60%

Scheme 1| Rhodaelectro-catalyzed C-H alkenylation.

achieved with weakly O-coordinating®® benzoic acids 1
and alkenes 2, serving as a proof of concept for the first
rhodium electrocatalyzed C-H activation. The optimized
reaction conditions were characterized by using Potassi-
um acetate (KOAc) as the additive and a mixture of
t-AmOH and H,O as the effective solvent system, deliv-
ering the desired products 3 in a user-friendly undivided
cell setup. Initially, various substituents in the ortho-,
meta-, and para-positions of benzoic acids were
employed to probe the robustness of the electrocata-
lyzed C-H transformation, proceeding with excellent
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levels of positional, diastereo-, and chemoselectivities.
Notably, a variety of valuable electrophilic functional
groups, including sensitive esters and ketones, were fully
tolerated in this electrooxidative rhodium-catalyzed C-H
alkenylations. Likewise, variously substituted acrylates 2
proved to be amenable, including an oxidation-sensitive
aliphatic hydroxy group. Furthermore, the procedure
proved to be applicable to amides and indoles. Specifi-
cally, endogenous steroid pregnenolone 2k could be
efficiently converted to the desired products 3k without
racemization of the stereogenic centers. It is worth
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Scheme 2 | (a-c) Summary of key mechanistic findings.

noting that electrochemical vinyl C-H activation was
initially realized in this study, as well.®®7°

Competitive experiments showed a clear preference in
favor of the more electron-rich benzoic acids 1. The ex-
periment was conducted by an analysis of the initial rates
for electron-rich and electron-deficient benzoic acids 1c
and 1d in independent reactions (Scheme 2a). This obser-
vation is in good agreement with a base-assisted intra-
molecular electrophilic-type substitution (BIES)""® C-H
activation manifold. Furthermore, deuteration studies
using CDzOD as the cosolvent suggested a facile and
reversible C-H activation event, while highlighting an or-
ganometallic C-H activation mechanism (Scheme 2b).
A minor kinetic isotopic effect illustrated that C-H rhoda-
nation is not the rate-determining step, providing an ad-
ditional support for fast C-H scission (Scheme 2¢).

On the basis of the mechanistic findings, a catalytic
cycle depicted in Scheme 3 has been proposed. Initially,
carboxylate-assisted BIES C—H activation delivers cyclo-
metalated intermediate 4b. Next, migratory alkene inser-
tion generates the catalytically competent rhodiumdlil)
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species 4d. Thereafter, p-hydride elimination and reduc-
tive elimination deliver the desired products 3. Finally,
the key anodic oxidation of the reduced rhodium(l) in-
termediate 4e regenerates the catalytically active rhodi-
umdlll) species 4a via an anodic single-electron transfer
(SET) event.

In contrast to the alkenylation of a,p-unsaturated
carbonyl compounds under rhodaelectro-catalysis,
Ackermann recently reported an intriguing alkenylation
reaction using unactivated alkenes 6 with weakly coor-
dinating benzamides (Scheme 4).”° Here, the dehydro-
genative alkenylation products 7 were obtained by
using NaOPiv instead of the previously reported KOAc
additive. The rhodaelectro-catalyzed C-H alkenylation
was shown to proceed with ample substrate scope, in-
cluding heterocycles and valuable electrophilic function-
al group, such as chloro, bromo, and nitrile. Likewise,
various alkenes 6 proved to be amenable, including
oxidation-sensitive hydroxyl substituents. A gram-scale
reaction highlighted the synthetic utility of the
rhodaelectro-catalyzed C-H activation.
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Scheme 3 | Plausible catalytic cycle for alkenylation.

Rhodaelectro-Catalyzed C-H
Alkynylation

The strategy of rhodaelectro-catalytic C—H activation
proved to be broadly applicable and gave access to
synthetically useful polycyclic aromatic hydrocarbons
(PAHs)®8* through a two-step sequential dehydrogena-
tive annulation electrocatalysis (Scheme 5a).®* Thus,
electrooxidative C—B/C—H [2 + 2 + 2] cyclization was re-
alized with a variety of boronic acids featuring versatile
rhodium catalysis. The C-B/C—H annulation was effi-
ciently established with ample scope and remarkable
levels of functional group tolerance, such as chloro, ester,
and cyano substituents, in a user-friendly undivided cell
setup. Notably, the chemoselectivity of the conversion
of sensitive iodo-substituted boronic acids could be sig-
nificantly improved as compared with transformations
with typical chemical oxidants, AgOAc and Cu(OAc),
(Scheme 5b).

Further transformation of substituted tetraphenyl
naphthalenes into n-conjugation PAHs proved viable in
the presence of 20 mol % of 2,3-Dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) in a divided electrochemical
cell at room temperature (Scheme 6).8%%” Thereby, a set
of useful late-stage diversification reactions provided
access to important PAHs derivatives. The unambiguous
structure of cyclodehydrogenated product 11 was
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confirmed by X-ray diffraction analysis, revealing a struc-
turally nonplanar PAH. In addition, the conducted photo-
absorption and cyclic voltammetry (CV) measurements
reflected the new optoelectronic properties of the elec-
trochemically generated PAHs (Scheme 7).88#°

Importantly, Ackermann also established robust flow
rhodaelectro-catalyzed alkyne annulations using aryl imi-
dates 12 as the substrates (Scheme 8).%° It is particularly
noteworthy that C—-H/N—H alkyne annulations were ame-
nable to electroflow technology using a slightly modified
IKA setup.®™® This strategy represents a user-friendly
tool for the efficient upscaling of a reaction with signifi-
cantly improved control of heat and mass transfer. The
scope for this challenging flow rhodaelectro-catalyzed
alkyne annulation gave access to isoquinolines, as well as
azo-tetracycles, by an intramolecular reaction.

In-depth mechanistic studies were performed to probe
the catalyst’s modus operandi (Scheme 8). Thus, the
stoichiometric synthesis of the two novel cyclometalated
rhodium(lll) complexes 17a and 17b from imidates 12a
was accomplished (Scheme 9a). The well-defined rhodi-
um(lll) complexes were found to be competent in the
catalytic C-H annulation (Scheme 9b). Notably, the for-
mation of well-characterized rhodium(ll)-heptacycle 18
was observed when treating complex 17b with alkyne
13a, whereas alkyne 13a underwent an insertion reaction
(Scheme 9¢). The formation of product 14a was observed
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when electricity was applied, thus providing support for gain further insights into the role of sodium salt. These
an oxidation-induced reductive elimination within a un-  studies indicated that the additive, NaOPiv, accelerated
usual rhodiumdIl/1V/11) regime (Scheme 9d).°°™° |n addi- the product formation from rhodacycle 18 upon
tion, the Ackermann group conducted CV experimentsto  electrolysis.
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In addition, computational studies rationalized a favor-
able Rh(lI/IV/1) manifold with an activation barrier of
15.2 kcal mol™ for the oxidatively induced reductive elim-
ination step (Figure 1). These computational studies were
in good agreement with the experimental findings.

On the basis of these mechanistic studies, a
plausible catalytic cycle was proposed to feature
carboxylate-assisted C—H rhodanation to deliver the
cyclometallated rhodium complex 17 (Scheme 10).
Thereafter, migratory insertion and anodic SET generat-
ed rhodium(V) complex € to subsequently undergo
oxidatively induced reductive elimination from interme-
diate C. Thereby, product 14 is released, while the cata-
lytically competent species A was regenerated.

Electrooxidative alkyne annulation was
merged with a multiple C-H domino

recently
strategy
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(Scheme 11).°" In contrast to the previous transforma-
tion,® the use of easily accessible imidamides 19 enabled
the challenging formation of various aza-PAHs. The
rhodaelectro-catalyzed cascade C-H activations were
efficiently realized with ample scope and remarkable
functional group tolerance.

Having demonstrated the versatility of the
rhodaelectro-catalyzed C—H annulation, Ackermann was
encouraged to investigate its mechanism (Scheme 12). It
is noteworthy that the electrosynthesis occurred in the
presence of well-defined rhodacycles 21 and 22 as the
catalysts. These findings provide support for the order of
the three subsequent C-H activation events. An addition-
al application for a unique dendrimer 23 through elec-
trooxidative assembly of protected d-lactone 24 was
accomplished (Scheme 13).
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Rhodaelectro-Catalyzed C-H
Phosphorylation

Recently, the Xu group™® concurrently disclosed a

mechanistically related phosphorylation using a N
-coordinating directing group (Scheme 14). The broadly
applicable concept of rhnodaelectro-catalysis was further
utilized for effective C—H phosphorylation using diphe-
nylphosphines 26. To prove scalability, a decagram scale
reaction was successfully performed, illustrating the po-
tential for future industrial applications.

The catalyst’s modus operandi was interrogated by de-
tailed mechanistic studies. Specifically, two well-defined
rhodium(lll) complexes 28 and 29 were prepared. Both
complexes 28 and 29 proved to be catalytically active in
catalytic settings (Scheme 15a). Thus, the rhodiumdlll)
complex 28 undergoes ligand exchange to form the more
oxidizable key intermediate 29, which is followed by
oxidation-induced reductive elimination to generate the
desired product 27 (Scheme 15b).

Notably, electrochemistry is an ideal platform for
mechanistic studies. In a proof-of-concept study, the
Chang group' recently probed the viability of cyclome-
tallated rhodium complexes for oxidatively induced
reductive elimination steps studies. First, two fully char-
acterized stable cyclometallated rhodium complexes
33 and 35a were successfully prepared and their
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electrochemical properties investigated by CV studies
(Scheme 16a). An irreversible oxidation potential for
35a was observed at E,,=0.331V versus Fc/Fc* in tet-
rahydrofuran (THF), which can be further oxidized by
silver salt to generate a putative high-valence rhodium
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Scheme 9 | (a-d) Synthesis of rhodacyles 17a, 17b, 18, and applications to C-H activation catalysis.

species according to the known oxidation potential of
Ad' (E12=0.41V vs Fc/Fc* in THF). Indeed, the desired
arylated and methylated products 37a and 37b were
obtained, while reductive elimination did not take place
even at 80 °C under oxidant-free conditions. These find-
ings confirm that reductive elimination was induced by
single-electron oxidation (Schemes 16b and 16¢).

Rhodaelectro-Catalyzed C-C
Alkenylation

The versatile electrochemical rhodium catalysis manifold
is not limited to C—H transformations. Hence, Ackermann
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disclosed a rhodaelectro-catalyzed C-C alkenylation,
representing the proof-of-concept for organometallic
C-C functionalization® by electrocatalysis.®®> Within
the organometallic C-C activation manifold, electro-
chemical chelation-assisted C-C functionalizations were
demonstrated to proceed with ample substrate scope
and outstanding levels of chemo- and position-based
selectivities (Scheme 17a). In addition, competition
experiments between the C-C and C-H functionaliza-
tions revealed a preferential reactivity of the C-C activa-
tion manifold, thus position selectively furnishing densely
decorated 1,2,3-substituted arenes, not accessible by
more common C—H activation strategies (Scheme 17b).
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The catalyst’s mode of action was investigated by
detailed mechanistic studies (Scheme 18). Competition
experiments showed that electron-rich arenes and
olefins were preferentially converted (Scheme 18a).
The C-C and C-H functionalization competition
experiment showed that the C-C activation occurred
faster than the C-H activation (Scheme 18b). The use of
isotopically labeled [D]-tAmOD and D,O did not lead
to a significant deuteration in the unreacted starting
material or the obtained product. These findings are
indicative of a slow C-C scission (Scheme 18c). The
formation of hydrogen as the sole byproduct of cathod-
ic proton reduction was confirmed by headspace gas
chromatographic analysis (Scheme 18d). Notably, the
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two well-defined rhodium complexes 42a and 42b
proved to be competent catalysts for the organometal-
lic nature of the electrooxidative C-C alkenylation
(Scheme 18e).

Their findings were rationalized by a plausible catalytic
cycle depicted in Scheme 19. Initiated by the formation of
active catalyst 4a, the seven-membered rhodacycle 43
was formed upon chelating with the nitrogen and oxygen
of substrate 38 with the rhodium(lll) catalyst. Thereafter,
migratory alkene insertion occurred to form the key
seven-membered intermediate 46. Finally, reductive
elimination furnished the desired product 40, and the
active catalyst 4a was regenerated upon anodic oxida-
tion of the rhodium(l) intermediate 47.
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Scheme 11 | Rhodaelectro-catalyzed domino annulation.
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(a) Synthesis of rhodacycle 21 and 22
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(b) Catalytical reactivities of 21 and 22
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(c) The order of C—H activations

Scheme 12 | (a-c) Key mechanistic findings.

DOI: 10.31635/ccschem.020.202000365
CCS Chem. 2020, 2, 1529-1552


https://doi.org/10.31635/ccschem.020.202000365

©CCS

MINI REVIEW

Chemistry

Cul (10 mol %)
DIPEA (20 mol %)
HOACc (20 mol %)

DCM, 25°C, 4 h
Me_ Me
g ©
0 (0]

O, Me
-'/O><Me

e}

Me

me © 24: 88%

Scheme 13 | Late-stage functionalization of aza-PAHS.
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Scheme 14 | (a and b) Rhodaelectro-catalyzed C—H phosphorylation.

DOI: 10.31635/ccschem.020.202000365
CCS Chem. 2020, 2, 1529-1552


https://doi.org/10.31635/ccschem.020.202000365

@CCS

Chemistry

MINI REVIEW

(a) Rh-complexs and anodic oxidation induced reductive elimination
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Scheme 15| (a and b) Key mechanistic findings and plausible catalytic cycle for rhodaelectro-catalyzed C—H
phosphorylation.
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Scheme 16 | (a-c) Oxidatively induced reductive elimination of rhodium complexes.
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(a) Scope of rhodaelectro-catalyzed C—C alkenylation
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Scheme 17 | (a and b) Rhodaelectro-catalyzed C—C alkenylation and position selectivity.
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Scheme 18 | (a-e) Key mechanistic findings of rhodaelectro-catalyzed C—C alkenylation.
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Scheme 19 | Plausible catalytic cycle of rhodaelectro-catalyzed C—C alkenylation.

Conclusions

In recent years, rhodaelectro-catalyzed C—H activation
has emerged as a powerful platform for molecular
synthesis, employing sustainable electricity as the ter-
minal oxidant and avoiding the use of stoichiometric
amounts of sacrificial chemical oxidants. Since the
first example of rhodaelectro-catalyzed C—H activation
with weakly O-coordinating benzoic acids was de-
scribed by the Ackermann group, numerous elegant
transformations applying rhodaelectro-catalyzed C-H
or C-C activations have been established. Key break-
throughs in the understanding of the catalytic mode
of action and overall catalysis have been achieved
by among others headspace gas chromatographic anal-
yses, CV, and computation, prominently featuring
oxidation-induced reductive elimination pathways. A
flow metallaelectro-catalyzed C—H activation was real-
ized in terms of robust rhodaelectro-catalyzed alkyne
annulations. In addition, the electrochemical assembly
of PAHs was proved viable via rhodaelectro-catalyzed
cascade C—H annulations. Furthermore, electrochemi-
cal C-C activations were accomplished by expedient

DOI: 10.31635/ccschem.020.202000365
CCS Chem. 2020, 2, 1529-1552

oxidative rhodium(lll) catalysis. Given the sustainable
nature of metallaelectro-catalyzed C—H activation re-
action, exciting future advances are expected in this
rapidly evolving research area, which should address
enantioselective metallaelectro-catalysis,'*® photoelec-
trochemical transformations,’°” ™ and organic materials
electrochemical syntheses.
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