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ABSTRACT: Transition-metal-catalyzed C—H bond functionalization has known a rapid evolution in the @
last years, offering modern strategies for reaching high molecular complexity in a step- and atom-economical C

way. Despite the indisputable advances, selectivity issues still remain, given the ubiquity of C—H bonds on ¢
molecules; thus, several approaches have been developed to tackle this challenge. Among them, the use of a _
transient directing group has emerged as an effective tool, circumventing the need for extra synthetic steps to
install and then cleave a directing group on the molecule. More recently, this strategy has been successfully

applied to the even more challenging transition-metal-catalyzed enantioselective C—H bond functionaliza-
tion. This review will highlight and discuss the main advances made in the use of a chiral transient directing

group for the enantioselective functionalization of C(sp*)—H and C(sp®)—H bonds by transition-metal

catalysis.
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1. INTRODUCTION

In the last few decades, transition-metal-catalyzed C—H bond
functionalization has emerged as a powerful strategy for
achieving unprecedented transformations in a step- and atom-
economical way." This was illustrated, for instance, by the huge
number of applications of this synthetic tool for the
preparation of highly complex molecules.” Despite the
unarguable advances, some limitations still remain: the
selectivity is one of the most relevant challenges to be
addressed, since C—H bonds are ubiquitous on a molecule.
This issue has been elegantly circumvented with the aid of a
directing group (DG), which is able to coordinate to the metal
center and to place it close to the C—H bond to be
functionalized.> Hence, various monodentate and bidentate
directing groups have been efficiently used for the selective
functionalization of different positions over aromatic* and
aliphatic derivatives.” Nevertheless, solutions to avoid the extra
synthetic steps required to install and cleave the directing
group on the molecules were needed. Therefore, several
strategies have arisen, such as the use of traceless directing
groups’ and transient mediators.”® More recently, other
promising alternatives have emerged, based on the use of
noncovalent interactions between the substrates and designed
catalysts®” and transient directing groups (TDGs).'>"" Since
the pioneering example described by Jun and co-workers in
1997," the latter strategy was successfully applied in several
transition-metal-catalyzed regioselective C—H bond function-
alization, appearing as a modern and sustainable solution.
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Encouraged by this new synthetic tool, the scientific
community showed a real endeavor toward the design and
use of chiral transient directing groups to achieve the highly
challenging enantioselective C—H bond functionalization. "
Indeed, the chiral transient directing group (CTDG) strategy,
which relied on the reversible and temporary formation of a
chiral directing group from a functional group, was particularly
appealing. Due to the fact that the transient directing group
also played the role of a chiral ligand, the number of species in
the reaction media remained limited, reducing the possibilities
for side reactions. Conceptually, a suitable functional group
(FG*) on the substrate would first react with a chiral organic
catalyst to afford the aforementioned CTDG (I). After its
coordination with the transition-metal center in a monodentate
or bidentate fashion, the metallacycle II would be formed. This
latter species would then react with the coupling partner,
leading to the species III and allowing the regeneration of the
transition-metal catalyst. A final hydrolysis would release the
product along with the organo-catalyst (Scheme 1).

The aim of this review is to showcase and discuss the recent
advances made in the cutting-edge C—H activation field based
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Scheme 1. Chiral Transient Directing Group Strategy in
Transition-Metal-Catalyzed C—H Bond Activation
Reactions
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on the use of chiral transient directing groups to address
transition-metal-catalyzed enantioselective C—H bond func-
tionalization. First, major advances regarding the atropose-
lective C(sp®)—H functionalization for the synthesis of
enantioenriched chiral biaryls will be described. Then, the
application of the transient directing group strategy to the
preparation of enantioenriched heterocycles and carbocyles
along with miscellaneous reactions will be highlighted. Finally,
the last part of the review will be dedicated to the recent
developments in transition-metal-catalyzed enantioselective
C(sp*)—H bond functionalization.

2. ASYMMETRIC C(sp?)—H BOND ACTIVATION FOR
ATROPISOMER SYNTHESIS

2.1. From Biaryl Derivatives. Given the significance and
abundance of axially chiral biaryls in bioactive natural
products,14 advanced material sciences,'® chiral Iigands,16 and
catalysts,'” groundbreaking advances have been made toward a
straightforward access to these scaffolds.**'® Existing methods
to synthesize such derivatives have generally relied on
stereoselective cross-coupling reactions,”” asymmetric cyclo-
additions,” and transition-metal-catalyzed atroposelective C—
H bond functionalization,”’ among others.”” Recently, the
chiral transient directing group strategy appeared as a potent
tool for the atroposelective synthesis of chiral biaryls.
Therefore, the major advances made to access these high-
value-added axially chiral biaryl backbones thanks to this
approach will be highlighted and discussed in this section.

2.1.1. Olefination and Allylation Reactions. In 2017, Shi
and co-workers studied the chiral transient directing group
assisted Pd-catalyzed atroposelective olefination of biaryl
aldehydes based on the following working hypothesis.”” First,
the reaction of the racemic biaryl aldehyde (rac-1) with the
chiral amino acid A would reversibly afford the two imines I
and IL Then, formation of the axially enantioenriched biaryl
palladacycle III derived from the diastereoisomer imine I
would take place, presumably driven by steric interactions. The
latter intermediate III would then undergo a Heck-type
reaction with the alkene. After a reductive elimination and an
in situ hydrolysis, the enantioenriched product 2 would be

released along with the organocatalyst A. Finally, the
palladium(II) catalyst would be regenerated after oxidation.
Using the readily available chiral amino acid 1-tert-leucine (A)
as a pivotal transient directing group precursor, a panel of
aromatic aldehdyes (rac-1) were olefinated through a dynamic
kinetic resolution pathway (Scheme 2). When substrates
bearing electron-donating groups were used, the expected
alkenylated products (2a—d) were obtained in yields up to
94% with high enantioselectivities (up to >99%). The
transformation was tolerant to functional groups such as a
halogen (1e) and an ester (1f). Pleasingly, a styrene derivative
was a suitable coupling partner, as shown by the synthesis of
compound 2g. In the case of biaryl derivatives bearing bulky
substituents at both 6- and 2’-positions, the reaction proceeded
via a kinetic resolution pathway, furnishing the enantiopure
products 2h—k in 30—45% yields along with the enantioen-
riched starting biaryl aldehydes 1h—k. It is worth mentioning
that in this case the reaction also went smoothly with other
acrylate and electron-poor styrene derivatives, as demonstrated
by the synthesis of compounds 2l—n.

A year later, a Pd-catalyzed asymmetric allylation of biaryl
aldehydes via a (dynamic) kinetic resolution reaction was
developed by the same group (Scheme 3).** Using 1-tert-
leucine (A) as a chiral organo-catalyst, an array of biaryl
aldehydes rac-3 was functionalized with the allylic acetate
reagent in the presence of benzoquinone in a HFIP/AcOH
mixture. It turned out that the presence of an oxidant under
acidic reaction conditions was crucial for the efficiency of the
reaction. With substrates bearing a substituent at either the
phenyl (3a—e) or the naphthyl part (3fg), the corresponding
allylated products were obtained efficiently through a dynamic
kinetic resolution pathway in yields ranging between 33% and
71% and with high enantioselectivities (96% to >99% ee).
Allylated biaryls bearing either halogens or electron-with-
drawing groups (4a—c) as well as electron-donating groups
(4d—f) were efficiently synthesized. In addition, the sub-
stitution pattern did not have a significant effect on the
outcome of the reaction (4a,b,g). It is worth mentioning that
other coupling partners were also successfully used (4h,i) and
replacing the leaving group of the allylation reagent with OBz
or OBoc led to the corresponding product (4j) in 65% and
23% yields, respectively. With 2'- and 6-disubstituted racemic
biaryls, the reaction proceeded in the presence of the allylic
acetate reagent via a kinetic resolution process, affording the
enantioenriched allylated products 4k—n along with the
enantioenriched starting materials 3k—n. Then, a Pd-catalyzed
olefination of non-C,-symmetric biaryl aldehydes was achieved
using the vinyl ethylene carbonate followed by a reduction
step, offering an efficient access to the corresponding diols 6a—
g in moderate to good yields and high enantioselectivities
(>99%) (Scheme 3).

Applying the enantioselective C—H functionalization strat-
egy to natural products synthesis,”>“"**° the Shi group
reported a concise and highly enantioselective total synthesis
of TAN-1085,° an angucycline antibiotic isolated from
Streptomyces species (Scheme 4).”” From their pioneering
work,”” a scalable and efficient construction of the axially chiral
biaryl scaffold 8 was achieved in 75% yield with a high level of
enantioselectivity (99% ee).

In 2019, Zhang and Xie extended this appealing strategy to
the synthesis of unprecedented N—C axially chiral N-
arylindoles by means of a transition-metal-catalyzed atropose-
lective C—H alkenylation reaction (Scheme 5).* Using a
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Scheme 2. Pd(II)-Catalyzed Atroposelective C—H
Olefination Reaction by Using a Chiral Transient Directing
Group

Shi et al.
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catalytic amount of Pd(OAc), and L-valine (B) in the presence
of benzoquinone, the olefination of a panel of aryl-1H-indole-
2-carbaldehyde derivatives rac-9 with n-butyl acrylate was
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Scheme 3. Synthesis of Axially Chiral Biaryls via a Pd(II)-
Catalyzed Asymmetric Allylation Reaction

Shi et al.

Pd(OAc), (10 mol%)
OAc A (20 mol%)
;Rs BQ (1 equiv)
HFIP/ACOH (4:1)
60 - 70 °C, air

{BUYCOZH

NH,
A

Selected examples
——— Dynamic Kinetic Resolution Pathway

o4
CHO F
Crra. O

4a, 58%, 96% ee

R1
CHO O
cose (X

4b, 58%, >99% ee

PhS l
CHO
g, ©

4e, 33%, 99% ee

CO,Et

4c, R' = CFy, 71%, >99% ee
4d, R" = OMe, 65%, 99% ee

CHO
CHO

CO,Et

R3

20
.

4f, R? = CgHs, 67%, 99% ee?  4h, R® = CO,Me, 45%, 99% ee

49, R? =F, 63%, 99% ee? 4i, R® = CH,0Ac, 60%, 99% ee

4j, R® = CO,Et, 65%, 99% ee®
23%, 99% ee®

Kinetic Resolution Pathway

F
O OO R2=H, 41, 41%, 94% ee
Me CHO CHO 31, 51% 68% ee, s = 542
RZ=Me, 4m, 34%, 98% ee
OO OO 3m, 44%, 85% ee, s = 2707
COaEt COEt  R2= CgHs, 4n, 36%, 99% ee

4K 36%. 98% R2 3n, 59%, 49% ee, s = 3242
, 36%, 98% ee

3k, 43%, 78% ee, s = 887

1- Pd(OAc), (10 mol9,
A (30 mol%)
nPrCO,Na (2 equiv)

R @ = HFIP/ACOH (9:1)
cho 60 - 70 °C, air
+ [ o
H O~( 2- Raney-(Ni) / Hy
R2 o)

Selected examples

THF, rt
o & i
on ®
OH F OH
OH OH OH
SYA ™ o9

6a, 40%, 99% ee

o

6b, 36%, 99% ee

OMe
R1
Me MeO. O
O OH
O OH oH MeO
OH MeO. OH
o QU O
3
99 o

OMe

6d, R' = OMe, 71%, >99% ee 6f, 64%, 99% ee 69, 63%, 99% ee

6e, R' = Me, 61%, >99% ee

7A (30 mol %). ®The leaving group of the coupling partner (OAc)
was replaced by a OBz group. “The leaving group of the coupling
partner (OAc) was replaced by a OBoc group.

achieved with high regio- and stereocontrol, leading to the
corresponding alkenylated products 10a—g. Various N-
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Scheme 4. Application of the Transient Directing Group
Strategy to Access the Key Intermediate 8 for the Total
Synthesis of TAN-1085

Shietal.
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arylindoles bearing electron-donating and electron-withdraw-
ing groups at either the indole (9a—c) or the phenyl part (9d—
g) were functionalized in good yields via a desymmetrization
process. The transformation also went smoothly with a phenyl
vinyl sulfone, a styrene derivative, and 3-methylenedihydrofur-
an-2(3H)-one, affording the compounds 10h—j. Moreover, a
dynamic kinetic resolution pathway was reported, allowing the
functionalization of N-arylindoles bearing a halogen or an alkyl
chain in good yields with excellent enantioselectivities (10k,]).
The transformation was not restricted to the use of the n-butyl
acrylate, as several olefins were suitable (10m,n). The
olefination of the bulkier substrates rac-11a—i with various
activated olefins as coupling partners was achieved in the
presence of L-tert-leucine and silver triflate via a kinetic
resolution process, furnishing a range of enantioenriched
heterobiaryl derivatives in moderate to good yields and
excellent enantioselectivities (12a—i).

The same year, the Shi group depicted the atroposelective
Pd-catalyzed allylation and olefination of biaryl aldehydes,
offering a straightforward access to the challenging five-
membered axially chiral biaryls (Scheme 6). For this
purpose, a catalytic amount of L-fert-leucine and Pd(OAc),
along with chloranil as the oxidant were used for the allylation
of a broad range of heterocycles rac-13, with the allylic acetate
reagent leading to enantioenriched atropoisomers featuring a
heteroaryl part. Importantly, it is worth mentioning that the
position of the heteroarenes on the biaryl scaffold did have an
influence on the mechanism pathway involved in the
transformation. When the benzothiophene was at the upper
part of the biaryls (13a,b), the transformation proceeded via a
kinetic resolution, affording the expected products 14a,b in
good vyields and high selectivities. However, for substrates
bearing heteroarenes in the lower part (13¢,d), the
enantiopure allylated biaryls 14c,d were obtained through a
dynamic kinetic resolution pathway in moderate to good
yields. The synthesis of the allylated 3,3’-bisbenzothiophene
(14e) was straightforward (77% yield, 92% ee), while no
enantioselectivity was observed with a biaryl bearing a
benzothiophene and a benzofuran residue (14f). This
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Scheme 5. Atroposelective Pd(IT)-Catalyzed Olefination of
N-Arylindoles

Zhang, Xie et al.
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Scheme 5. continued

“Pd(OAc), (10 mol %), A (20 mol %), AgTFA (2 equiv), NaHCO,
(2 equiv), TFE/AcOH (1:1), 60 °C, N,.

Scheme 6. Synthesis of Enantioenriched Atropoisomers
Featuring a Heteroaryl Part by Pd(II) Catalysis
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approach was then applied to the alkenylation of heteroarenes
with various acrylate derivatives and styrene under similar
reaction conditions. While a set of biaryls bearing a
benzothiophene part (15a—e) were functionalized via a kinetic
resolution process, the olefination of the benzofuran-based
biaryl 15f and the 3,3'-bisbenzothiophene 15g proceeded
according to a dynamic kinetic resolution pathway.

This year, the Ackermann group described the first
atroposelective palladaelectro-catalyzed olefination of biaryl

aldehydes by C—H bond activation under mild reaction
conditions (Scheme 7). A panel of biaryl derivatives rac-17

Scheme 7. Electrochemical Enantioselective Olefination of
Biaryl Aldehydes by Pd(II)-Catalyzed C—H Bond
Activation Using the Chiral Transient Directing Group
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was olefinated using L-tert-leucine as the chiral organo-catalyst
and LiOAc as the electrolyte, furnishing the corresponding
products in moderate to good yields (up to 71%) and high
enantioselectivities (up to 98% ee). Both electron-rich (17a)
and electron-poor (17b) substrates reacted well under these
conditions, showcasing the robustness of this approach. In
addition, disubstituted biphenyls proved to be suitable
substrates for this functionalization (17c,d). Notably, a series
of electron-deficient olefins was successfully used as coupling
partners, offering an atroposelective access to the correspond-
ing biaryls in up to 68% yield (18e—1). More interestingly, this
transformation turned out to also be efficient with N-
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arylpyrrole derivatives. Hence, an access to N—C axially chiral
heteroaryls 20a—e was achieved in a complete regio- and
stereoselective manner. Finally, the strategy was further applied
to access key compounds such as chiral BINOLSs, dicarboxylic
acids, and helicenes.

2.1.2. Naphthylation Reaction. In 2019, the Shi group
reported the atroposelective Pd-catalyzed ortho C—H naph-
thylation of racemic biaryl aldehydes rac-21 with 7-
oxabenzonorboranadienes (Scheme 8)°' leading to key
scaffolds known to be efficient chiral catalysts.'”"** For this
transformation, a four-step process was designed: insertion of a
7-oxabenzonorboranadiene derivative within the palladacycle

Scheme 8. Atroposelective Pd(II)-Catalyzed ortho C—H
Naphthylation of Biaryl Aldehydes

Shi et al.
RITAr PA(OAC), (10mol%) 1.7, N
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ReLAR| X R2L A |
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intermediate (I) followed by a f-oxygen elimination would
lead to the intermediate II. The latter would then undergo a
protonolysis to afford the dihydronaphthol III, which after a
dehydration step would furnish the expected product 22. By
the use of L-tert-leucine, 1-adamantaneacetic acid, and sodium
butyrate, an array of the desired naphthylated products (22a—
h) was obtained efficiently in good yields and enantioselectiv-
ities. Indeed, this reaction was compatible with substrates
bearing at the aryl ring either an electron-donating (21a) or an
electron-withdrawing group (21b) and with difunctionalized
substrates (21c,d). Also, the methodology was successfully
applied to substrates with electron-rich naphthyl parts (21e,f).
Nonetheless, a lower reactivity was observed once the
naphthalene ring was functionalized with an electron-with-
drawing group (22g). In addition, an access to the chiral
polysubstituted biaryl compound 22h was possible by this
methodology. Notably, the desymmetrization of prochiral
substrates was achieved in good to moderate yields and high
enantioselectivities (22ij). When several analogues of 7-
oxabenzonorboranadiene were used, the desired products
(22k1) were successfully synthesized with electron-rich
partners, in contrast to electron-poor partners, which only
afforded the dihydronaphthol products (22m,n).

2.1.3. Alkynylation Reaction. Aiming at having an efficient
access toward advanced intermediates for the synthesis of the
bioactive dibenzocyclooctadiene lignans,”” Shi et al. developed
a novel Pd-catalyzed C—H alkynylation reaction in the
presence of a TIPS-protected alkynyl bromide (Scheme 9).**
The approach displayed a high functional group tolerance,
since products bearing electron-withdrawing groups and
halogens (24a—c) as well as electron-donating groups
(24d,e) were obtained through a dynamic kinetic resolution
process. Polysubstituted biaryl aldehydes 23f—h also under-
went this reaction successfully. Moreover, different silyl-
protected alkynyl bromides turned out to be suitable for this
transformation, leading to the corresponding compounds 24i,
in up to 74% vyield and high selectivities (up to 99% ee).
Furthermore, prochiral substrates were desymmetrized in good
yields and high enantioselectivities (24k—m) and both
halogenated 231 and alkylated biaryl aldehydes 23m were
suitable substrates. In case of biaryl aldehydes, substituted at
both 6- and 2’-positions (25a—d), the Pd-catalyzed
alkynylation reaction proceeded via a kinetic resolution
pathway under slightly modified reaction conditions (Scheme
9).

Then, the same group extended their methodology to the
challenging atroposelective alkynylation of biaryls featuring at
least one five-membered heteroarene (Scheme 10).*> Under
palladium catalysis, the enantioselective alkynylation of various
biaryl aldehydes bearing a C—N and a C—C chiral axis with a
TIPS-protected alkyne bromide was realized in an efficient
manner. Different N-arylpyrroles were functionalized (28a—d)
and different alkynes were efficient partners in the reaction
(28e—g), although N-arylindoles were unreactive. The
alkynylation of the thiophene derivatives 27h,i was achieved
in moderate to good yields and with enantiomeric excesses
ranging from 21% to 76%. Moreover, replacing the
benzothiophene in the lower part by a benzofuran had a
deleterious effect on the enantioselectivity (28] vs 28k and 28l
vs 28m), whereas the nature of the heteroaryl in the upper part
of the biaryls had no significant effect on the outcome of the
reaction (28n—q). Interestingly, with this approach, the
alkynylation of substrates having two five-membered hetero-
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Scheme 9. Atroposelective Synthesis of Alkynylated Biaryl
Scaffolds

Shi et al.
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Scheme 10. Pd(II)-Catalyzed Alkynylation of Biaryls
Containing a Five-Membered Ring by C—H Bond
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arenes was possible and it turned out that the enantioselectivity
of the reaction was dependent on the nature of the heteroarene
in the lower part (28r vs 28s).

2.2. From Styrene Derivatives. Recently in 2020, Shi and
co-workers investigated the challenging synthesis of axially
chiral styrenes. To that purpose, the Pd-catalyzed atropose-
lective C—H olefination of racemic styrenes (rac-29) using the
bulky amino acid C was developed in the presence of
benzoquinone and cobalt acetate in a mixture of AcOH and
DMSO, the latter presumably acting as a ligand (Scheme

CHO
= TIPS

282

P/

RZ
28n, X =S, R? = OMe, 38%, 98% ee 28p, X = S, 47%, 99% ee
280, X =0, R?=H, 55%, 97% ee 289, X =0, 77%, 90% ee

28r, X =S, 98%, 93% ee
28s, X = 0, 98%, 5% ee

11).*® With substrates bearing a substituent at the ortho
position, the expected products were obtained with a good
enantiocontrol (30a—c) except in the case of 30d. By the
replacement of the aryl part by a naphthyl part, the olefination
of several derivatives (30e—i) went smoothly. Moreover,
several activated olefins and styrenes were suitable coupling
partners, leading to the synthesis of axially chiral compounds
(30j—0) in high enantioselectivities. Interestingly, using
acrylates derived from natural products, an access to added-
value styrenes (30p,q) was possible with high diastereomeric
excesses. Notably, axially chiral styrenes 30 were oxidized to
the corresponding carboxylic acids, which showed higher
efficiency as chiral ligands in the Co(IlI)-catalyzed enantiose-
lective C(sp®)—H amidation of a thioamide in comparison to
their biaryl counterparts.

3. ASYMMETRIC SYNTHESIS OF CHIRAL
CARBOCYCLES AND HETEROCYCLES BY C-H
BOND ACTIVATION

The preparation of chiral carbocycles and heterocycles through
transition-metal-catalyzed direct C—H bond activation has

https://dx.doi.org/10.1021/acscatal.0c03317
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Scheme 11. Synthesis of Axially Chiral Styrenes via the
Transient Directing Group Strategy

Shi et al.
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been considerably studied in the last decades. Indeed, the use
of rhodium complexes, especially those containing cyclo-
pentadienyl (Cp)-derived ligands, allowed many successful
enantioselective transformations employing different strategies
to induce asymmetry.'*®” In contrast, the utilization of chiral
transient directing groups to this end is still in its infancy,
despite the indisputable advances made in recent years. In
2012, in the course of their study regarding the Rh(I)-
catalyzed intramolecular hydroacylation of disubstituted
alkenes, Douglas and co-workers provided the first example
applied to the enantioselective cyclization of the aldehyde 31.*
To this purpose, a chiral derivative of 2-amino-3-picoline (D)
was used to achieve the in situ formation of the aldimine
species from 31 (Scheme 12). Although a unique example was
depicted with a modest enantioselectivity, this seminal work
paved the way for further developments in catalytic asymmetric
transformations using the chiral transient directing group
strategy. Note that a theoretical mechanistic study was then
published by Zhang, Lei, and co-workers in 2014.”

In 2019, Wang and co-workers took benefit from the use of
cyclopentadienyl-containing Rh(III) catalysts for the asym-
metric synthesis of phthalides.* Using a combination of the
[Cp**"RhCl,], catalyst and the chiral amine E, a methodology
was developed for the enantioselective homo- and hetero-
coupling of benzaldehyde derivatives, offering access to a large

panel of chiral phthalides (yields up to 73% and enantiomeric
excesses ranging from 61% to 99.9%; Scheme 13)."' For
compounds 35a—f, resulting from a homocoupling reaction,
the best yields were obtained with phenyl- and alkyl-
substituted aromatic aldehydes (33a,c) as well as benzaldehyde
(33e). In contrast, the presence of a CF; group (33b) or
halogens (33d,f) had a deleterious effect on the outcome of
the reaction. Notably, when meta-substituted aldehydes
reacted, the functionalization at the less hindered position
occurred (35c,d). Regarding the heterocoupling reactions
(36a—i), the observed selectivity stemmed from the fact that
the transition-metal-catalyzed C—H bond activation event was
favored with substrates substituted with electron-neutral or
electron-donating groups (alkyl, phenyl, OBn), which then
reacted with aromatic aldehydes bearing electron-withdrawing
substituents (halogens, CF;, SO,Me, CO,Et, NO,). Hence, a
selective access to only one of the four potential products was
possible in most cases. Moreover, heterocoupling of 2,4-
dimethoxybenzaldehyde with aliphatic aldehydes was also
achieved, leading to the corresponding products 36j—1 with
good to high enantioselectivities. Regarding the mechanism of
the transformation, a plausible pathway was suggested to
explain the observed enantioselectivities for both homo- and
heterocouplings. First, the precatalyst [Cp*#RhCl,], would
react with the silver tetrafluoroborate to afford the active
species [Cp*#Rh™]. Then, the formation of rhodacycle II
would take place from the aldimine I via a reversible C—H
activation event, followed by the coordination of the second
coupling partner (intermediate III). Subsequently, the
intermediate IV would be obtained after a stereoselective
addition of the arene to the second aldehyde, followed by an
intramolecular attack of the resulting alkoxide at the imine
carbon. After a f-hydride elimination, a Rh(I) species would
be released, which after oxidation with the silver salt would
regenerate the active Rh(III) catalyst along with the imine V.
This latter species would be easily hydrolyzed to provide the
desired chiral phthalide 35 or 36 and the organo-catalyst.

In contrast to rhodium based-catalysts, ruthenium catalysts
have been less employed in asymmetric C—H activation
reactions.”'™** In 2019, Cui and co-workers reported the first
ruthenium-catalyzed synthesis of chiral indoline derivatives by
means of the chiral transient directing group strategy. Using
the [Ru(p-cymene)Cl,], catalyst combined with the chiral
amine F and an additional chiral acid G, the enantioselective
intramolecular hydroarylation of aromatic aldehydes 37 was
achieved, leading to N-tosyl-protected indoline derivatives with
yields up to 92% and enantiomeric excesses between 69% and
96% (Scheme 14).** Several benzaldehyde derivatives 37a—i
bearing either an electron-donating group (OMe; 37a,c,g) or
an electron-withdrawing group (CF;; 37eh) were function-
alized with moderate to high yields. The substitution pattern
on the aromatic aldehydes did not have a strong effect on the
outcome of the reaction, except in the presence of a methoxy

Scheme 12. Rh(I)-Catalyzed Enantioselective Hydroacylation Using a Chiral TDG

Douglas et al.
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Scheme 13. Rh(III)-Catalyzed Preparation of Chiral
Phthalides from Aldehydes Using a Chiral TDG

Wang et al.
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group at the ortho position, as the corresponding product 38g
was isolated in only 34% yield with a high enantiomeric excess.
The substitution over the alkene counterpart was also
investigated (37j—r), and it turned out that various (E)-
styrenyl groups containing both electron-donating and
electron-withdrawing groups (OMe and F, among others)
were suitable (37j—0). Moreover, alkenes substituted with
different substituents (Me, CH,OTBDMS, CO,Et; 37p—r)
were well tolerated. Note that the nitrogen-protecting group
was not only restricted to tosyl, since the N-nosyl indoline 38s

Scheme 14. Preparation of Chiral Indolines through an
Enantioselective Ru(II)-Catalyzed Intramolecular
Hydroarylation

Cuietal. H
o,
[Ru(p-cymene)Cla], (5 mol%) O Me
¢HO F (50 mol%) CHO ,R® .
H G (30 mol%)
Rl _ R A
I
N>Ry KH,PO, (2 equiv) AN Bu
Rz AgBF4 (20 mol%) R? N
37 PhCI/HFIP, 60 - 90 °C, N, 38 CO.H
o)
G
Selected examples
CHO ,—Ph CHO ,—Ph
N R N
R! Ts Ts
38a, R' = OMe, 64%, 69% ee 38c, R" = OMe, 86%, 94% ee
38b, R =F, 60%, 70% ee 38d, R" = F, 69%, 94% ee

38e, R! = CF3, 62%, 82% ee

CHO Ph CHO

R1
. L,

Ts Ts
(R)-38f, R" = H, 87%, 94% ee? 38j, R = 4-OMe, 54%, 94% ee
38k, R = 4-F, 65%, 93% ee
38g, R" = OMe, 34%, 90% g ; ,
333 RIZF on e 381, R = 3-OMe, 63%, 93% ee
b, 82%

38m, R = 3-F, 85%, 90% ee
38i, R" = CF3, 63%, 82% ee 38n, R = 2-OMe, 66%, 96% ee

380, R =2-F, 76%, 93% ee

3
CHO —R® 38p R2=Ts, R3 = Me, 92%, 96% ee
38q, R =Ts, R® = CH,0TBDMS, 76%, 91% ee
N 38r, R? = Ts, R® = CO,Me, 55%, 81% ee
k2 38s, R? = Ns, R3 = CgHs, 74%, 92% ee
[Ru(p-cymene)Cly], (5 mol%) Et

CHO F (50 mol%) CHO

H G (30 mol%)

Nw03H7 KH,PO,4 (2 equiv) N
Ts AgBF4 (20 mol%) Ts
PhCI/HFIP, 70 °C, N, 38t
from (E)-alkene, 86%, 95% ee
from(Z)-alkene, 67%, 92% ee

37t, (E)-alkene
37u, (Z)-alkene

Proposed Mechanism

Ts 37f

[Ru(p-cymene)Cl,],

HX A/Ph
\AgBF4,G A, )\
RuZO,CR
Aru),,\{\& Ru(p-cymene)(O,CR*),
v N,

Ts

Me iPr

p cymene

p-cymer€| Arii, /RU7OZCR*
| )7N \/\/Ph

Arin -R
r )—N u* N — Ts
N
\\Q\ Ts n
L] R*COy

“Absolute configuration determined by X-ray diffraction.

was synthesized. Notably, when both E and Z diastereoisomers
of the same alkene were employed as substrates (37t,u), the
same product 38t was obtained with high enantiomeric
excesses (91% and 92%, respectively), showing that the alkene
geometry did not have any influence on the stereocontrol of
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the transformation. A plausible mechanism was suggested for
the enantioselective synthesis of indoline scaffolds and is
shown in Scheme 14. First, the active catalyst species Ru(p-
cymene)(O,CR*), would be generated from Ru(p-cymene)-
(Cl,), followed by the formation of the ruthenacycle II from
the transient aldimine I through a reversible C—H activation
step. Coordination of the alkene to the ruthenium metal center
would lead to the cationic intermediate III as an ion pair with
the chiral carboxylate G, crucial for the efficiency and the
enantioselectivity of the reaction. Then, the insertion of the
alkene would occur selectively through the less hindered face
of the chiral imine (intermediate IV) presumably due to its
conformationally rigid structure. Finally, the product 38f
would be obtained after the hydrolysis of the aldimine V and F
would be regenerated along with the ruthenium-based catalyst.

In 2020, Wang and co-workers reported another application
of the chiral transient directing group strategy in a Ru-
catalyzed transformation for the synthesis of 2,3-dihydroben-
zofurans through an asymmetric intramolecular hydroarylation
reaction.** To this end, the combination of the [Ru(p-
cymene)Cl,], catalyst with the chiral amine F and trifluoro-
acetic acid were found to be the best for this transformation.
Several olefin-tethered aromatic aldehydes were smoothly
converted into the corresponding 2,3-dihydrobenzofurans 40
with yields up to 98% and enantiomeric excesses up to >99%
(Scheme 15). The reaction proceeded successfully with the

Scheme 15. Synthesis of Chiral 2,3-Dibenzofurans through a
Ru(II)-Catalyzed Enantioselective Intramolecular
Hydroarylation

Wang et al. [Ru(o-cymene)Clsl (5 mol%)
CHO F (20 mol%) R2 H
L AgSbFg (20 mol%) FHO (e N,
RI{ N N Me
= 10t
o/\”ARZ TFA (20 mol%) R
DCE, 60 °C, N, Z~d F
39 40

Selected examples
OBn OBn OBn
40a, 96%, 98% ee 40b, R' = OMe, 96%, 93% ee® 40f, R' = Me, 88%, 97% ee?
40c, R' = NO,, 90%, 96% ee ~ 40g, R' = OMe, 84%, 97% ee?
40d, R' = F, 90%, 94% ee? 40h, R = CgHs, 92%, 97% ee
40e, R' = Cl, 92%, 95% ee®  40i, R" = Br, 93%, 98% ee
OBn 2
cro K OBn
S S‘\Me S
o
40j, R' = OMe, 53%, 96% ee  40n, R% = OMe, 92%, 96% ee? 40u, 18%, 70% ee®
40k, R" = CgHs, 86%, 95% ee 400, R? = OAc, 90%, 95% ee
401, R' = CI, 90%, 98% ee®  40p, R? = OTBS, 86%, >99% ee
40m, R' = NO,, 95%, 40q, R? = Cl, 24%, 94% ee
>99% ee 40r, R? = Bn, 86%, 94% ee
40s, R? = CgHs, 94%, 92% ee

“F (40 mol %), TFA (40 mol %).

unsubstituted aldehyde 39a as well as with aromatic aldehydes
bearing halogens and electron-donating (e.g. OMe, Me) and
electron-withdrawing groups (NO,), at the para, meta, or ortho
position (39b—m). Nevertheless, the presence of a methoxy
group at the ortho position led to a lower yield (40j).
Substrates 39n—s, bearing various substituents at the allylic
position, were also tested, leading to the expected products

40n—s with very good yields and enantioselectivities, except
for the chlorine-containing product 40q. An extension of their
methodology to the synthesis of the indoline derivative 40u
turned out to be feasible but less efficient (18% yield, 70% ee).
A mechanism similar to that depicted in Scheme 14 was
suggested for this transformation, although the use of a chiral
acid was not required to improve yields and enantioselectiv-
ities.

4. APPLICATION OF THE CHIRAL TRANSIENT
DIRECTING GROUP STRATEGY FOR
MISCELLANEOUS REACTIONS

In 2018, Xu, Jin, and co-workers applied the chiral transient
directing group strategy in the enantioselective C(sp®)—H
arylation of ferrocenyl ketones by palladium catalysis in order
to obtain enantioenriched planar-chiral ferrocenes with yields
up to 75%, enantiomeric excesses ranging from 92% to 98%,
and ratios of mono- vs difunctionalized products between
88:12 and 99:1 (Scheme 16).* It was found that the reaction

Scheme 16. Enantioselective Pd(II)-Catalyzed C(sp*)—
Arylation of Ferrocenyl Ketones”

Xu, Jin et. al.
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“The absolute configuration was assigned to R, on the basis of X-ray
diffraction. “Ratios of mono- to diarylated products are indicated in
parentheses.

of acetylferrocene with 1-iodo-4-nitrobenzene was successfully
achieved using L-fert-leucine as the transient directing group
precursor, leading to the corresponding product 42a. Both
pivalic acid and sodium bicarbonate were essential for the
efficiency and the enantioselectivity of the transformation. In
particular, the pivalic acid had a dual function, as it promoted
the transient aldimine formation and played a key role in the
rate-determining C—H cleavage event. The arylation of 41 was
also realized with an array of para- and meta-substituted aryl
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iodides (42b—1i), electron-deficient species being more efficient
coupling partners (42b—eh,i). Aryl iodides bearing electron-
donating substituents (OMe, tBu) led to the expected products
42f,g in lower yields. Note that the reaction went smoothly
with disubstituted aryl iodides containing one electron-
withdrawing group, as demonstrated with compound 42j.
Additionally, when heteroaryl iodides were used, the expected
products 42k, were obtained in moderate to good yields and
high enantioselectivities (up to 97% ee). Notably, in all of the
cases, an excellent selectivity toward the monoarylation was
observed. Substituents over the ferrocene ring were also
tolerated, affording the corresponding arylated products 42m,n
with moderate to good yields. Finally, the n-propyl ketone 410
led to the arylated product 420 in 40% yield and 92%
enantiomeric excess. It is worth mentioning that a dimeric
palladacycle intermediate was presumably formed in the course
of the transformation.

In 2020, Liu, Engle, and co-workers reported another
application of the chiral transient directing group strategy for
the enantioselective Pd-catalyzed f-hydroarylation of alkenyl
benzaldehydes.*® It is worth mentioning that the enantiose-
lective B-hydroarylation of substituted alkenyl arenes®” is still
underdeveloped in comparison to the asymmetric a-hydro-
arylation reaction.*® Using 1-tert-leucine and in the presence of
a hydride donor (TMA-HCO,), the Pd(0)-catalyzed reductive
hydroarylation of alkenyl benzaldehydes with a panel of
(hetero)aromatic iodides was achieved with yields up to 94%
and enantiomeric excesses between 92% and >99% (Scheme
17). The reaction of (E)-2-(prop-1-en-1-yl)benzaldehyde with
several aryl iodides bearing electron-donating groups, electron-
withdrawing groups, and halogens led to the corresponding
products 44a—i in moderate to excellent yields. Interestingly,
various functional groups were tolerated such as a hydroxyl
group (44b), a N-Boc-protected amine (44c), and a free
carboxylic acid (44f). Heteroaryl iodides were suitable as well
(44j—1), although the pyridine derivative 441 was synthesized
with a very low yield. With regard to the alkene part, both E
and Z isomers were hydroarylated and it turned out that (E)-
alkenes gave the best enantiomeric excesses but with lower
yields (44m,n). Moreover, when the size of the substituent on
the alkene part was increased, lower yields were generally
obtained (44g vs 44m). Finally, benzaldehydes with different
substitution patterns were tested, leading to the corresponding
products 440—u in good yields. Note that ortho-substituted
benzaldehyde derivatives 43t,u were also functionalized. The
authors suggested the following pathway for the enantiose-
lective hydroarylation. First, aldimine I formation followed by
the coordination to Pd(0) would lead to the species II, which
would undergo an oxidative addition with the aryl iodide to
afford the intermediate III. Then an enantioselective
carbopalladation would take place (intermediate IV), which
would be the key step for enantioinduction. Subsequently, the
formate salt would coordinate to the metal center (inter-
mediate V), and after a decarboxylation reaction, the Pd—H
species VI would be obtained. A final reductive elimination
would regenerate the Pd(0) catalyst and would furnish VII,
which after hydrolysis would release the product 44a along
with L-tert-leucine (A).

5. ENANTIOSELECTIVE FUNCTIONALIZATION OF
C(sp®)—H BONDS

Despite their lower reactivity in comparison with C(sp*)—H
bonds, groundbreaking advances have been made in the

Scheme 17. Pd(0)-Catalyzed Enantioselective Reductive
Heck Arylation of Alkenyl Benzaldehydes

Liu, Engle et al.
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enantioselective functionalization of C(sp’)—H bonds b
transition-metal catalysis in the last few decades.'®'®"
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Among the existing approaches employed, the use of chiral
ligands in Pd-catalyzed directed C—H bond functionalization
reactions has been broadly exploited.”” Therefore, the quest for
new approaches to reach highly challenging asymmetric
transformations was particularly attractive. In this context,
although it is restricted so far to a handful of examples, the use
of the chiral transient directing group strategy turned out to be
an efficient tool, as highlighted in this section.

In 2016, Yu and co-workers pioneered the use of a chiral
transient directing group to achieve the Pd-catalyzed
enantioselective arylation of benzylic C(sp*)—H bonds.”® In
the course of their study related to the arylation of C(sp?)
centers of ketones and aldehydes by Pd catalysis, the authors
developed a methodology for the preparation of enantioen-
riched products by using L-tert-leucine (A) with yields up to
88% and enantiomeric ratios between 95:5 and 98:2 (Scheme
18). Due to the steric interactions between the bulky tert-butyl

Scheme 18. Pd(II)-Catalyzed Enantioselective Benzylic
C(sp®)—H Arylation of Benzaldehyde Derivatives Using L-
tert-Leucine as the Chiral Transient Directing Group
Precursor

Yuetal.
Pd(OAC), (10 mol%)
N CHO A (20 mol%) ~rCHO | Bu_coH
R + A R h
ANt AQTFA (2 equiv) ANAT NH;
R2 H0 (3 equiv) =3 A
45 HFIP/ACOH (9:1) .
100 °C, air
Examples 46a, R =H, 62%, 98:2 er ? R
o 46b, R = F, 80%, 98:2 er FsC
FiC ‘ R 46¢, R = Cl, 72%, 97:3 er O O
O O 46d, R = Br, 77%, 98:2 er H
7 46e, R = CO,Me, 73%, 98:2 er Me
Me 46f, R =NO,, 63%, 98:2er?  46h, R = CO,Me, 88%, 98:2 er

469, R = OMe, 63%, 95:5 er

o] Ry O cl ?
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Me Me TR

46j, 71%, 96:4 er

46i, R = CF3, 77%, 98:2 er?

460, R = Me , 68%, 97:3 er
46p, R = OBn, 54%, 98:2 er?

46k, R' = CF3, 69%, 97:3 er?
461, R" = F, 64%, 96:4 er”
46m, R" = Cl, 67%, 97:3 er®
46n, R' = Br, 60%, 97:3 er®

“Reaction performed at 110 °C. ¥S mol % Pd(OAc),, 10 mol % A.

group of L-tertleucine and the benzylic R* group, good
enantiomeric ratios were reached for this transformation. With
this approach, an array of meta- and para-substituted aryl
iodides was successfully employed for the functionalization of
2-ethyl-S-(trifluoromethyl)benzaldehyde. Halogens as well as
different electron-withdrawing (CO,Me, NO,, CF;) and
electron-donating groups (OMe) were well tolerated, as
demonstrated with the synthesis of compounds 46a—i. Several

ortho- and meta-substituted benzaldehydes were suitable
substrates in the reaction with 4-fluoroiodobenzene, and the
corresponding products 46j—n were obtained in 60—71%
yields and enantiomeric ratios up to 97:3. Note that the
transformation turned out to be tolerant to functional groups
such as an ester (46j) and halogens (461—n). Moreover, the
substituent over the benzylic position (R?) was not restricted
to a methyl group, since substrates bearing other alkyl chains
were also smoothly functionalized (460,p). Note that, later in
2018, Dang and co-workers reported a theoretical study to get
more insight into the regio- and stereoselectivity observed for
the Pd-catalyzed arylation of aldehydes and ketones by
C(sp®>)—H activation using the chiral transient directing
group strategy.51

In 2019, during their investigations toward the arylation of
phenylacetaldehyde derivatives with aryl iodides under
palladium catalysis, the Chen and Zhou group applied a
methodology similar to that depicted by the Yu group.”” A
single example of Pd(II)-catalyzed enantioselective arylation of
the 2-bromo-,a-dimethylbenzaldehyde 47 using the imine
derived from L-tert-leucine as the transient directing group was
achieved, leading to the corresponding product 48 in 43% yield
and an enantiomeric ratio of 70:30 (Scheme 19).

In 2020, Yu and co-workers provided a key contribution to
the field by developing the Pd-catalyzed enantioselective
arylation of nonactivated secondary C(sp®) centers. By
employing a combination of Pd(OAc),, p-valine (H),
pyridone, and Ag,PO;, the authors were able to perform the
arylation of cyclobutyl ketones 49, providing the correspond-
ing products 50a—s with yields up to 82% and enantiomeric
ratios up to 99:1 (Scheme 20).>” Remarkably, by replacing
Ag,PO; by AgTFA, the products were obtained with a reversed
enantioselectivity. Moreover, in this transformation, the
pyridone ligand, usually known for fastening the cleavage of
C-H bonds,A'k’ﬁ’m"54 was crucial to achieve the reaction with
high enantioselectivities. The arylation proved to be efficient
with several para- and meta-substituted aryl iodides bearing
electron-withdrawing groups such as CO,Me, NO,, Ac, CN,
CF,, and COC¢H; (50a—g). Disubstituted electron-poor aryl
iodides were also suitable coupling partners (50h,i). Although
the functionalization was not efficient with electron-neutral or
electron-rich iodoarenes, it went smoothly with heteroaromatic
iodides (50k,1). Moreover, different cyclobutyl alkyl ketones
were arylated at the a-position (50m—r) and only in the case
of the ketone 49m was a competitive arylation of the methyl
group of the alkyl chain also observed. Note that even the spiro
derivative 50s was successfully functionalized. After mecha-
nistic studies, a plausible pathway was suggested. First,
coordination of the imine I derived from 49a to the palladium
catalyst in the presence of the pyridone would afford the
intermediate II, followed by the formation of the palladacycle
IIL. This latter species would undergo an oxidative addition

Scheme 19. Pd(II)-Catalyzed C(sp>)—H Asymmetric Arylation of the Phenylacetaldehyde Derivative 47

Zhou, Chen et al.

| Br MeCH o
Br MeCHO Pd(OAc), (15 mol%) * tBua_CO,H
A (40 mol%) b
. O NH;,
H AgTFA (1.5 equiv) A
COMe HFIP/ACOH (1:1) som
125°C, Ny 2\e
a7 48, 43%, 70:30 er
12909 https://dx.doi.org/10.1021/acscatal.0c03317

ACS Catal. 2020, 10, 12898—12919


https://pubs.acs.org/doi/10.1021/acscatal.0c03317?fig=sch18&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03317?fig=sch18&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03317?fig=sch19&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03317?fig=sch19&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03317?ref=pdf

ACS Catalysis

pubs.acs.org/acscatalysis

REVE

Scheme 20. Pd(II)-Catalyzed Enantioselective C(sp®)—H
Arylation of Cyclobutyl Ketones

Yuetal. .
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“Using AgTFA instead of Ag;PO,, ent-S0a was obtained in 34% yield
(14:86 er) along with the corresponding diarylated product (50%
yield). bD-tert-Leucine was used as TDG precursor. ‘1 equiv of H was
used. “Ratio of the products resulting from the arylation of the
cyclobutane ring and the terminal methyl group.

with the aryl iodide (intermediate IV), and subsequently the
iodine abstraction by the silver salt would take place
(intermediate V). After reductive elimination, the catalyst
would be regenerated and the ketimine VI would be obtained.
A final hydrolysis of V would furnish the product 50a (or ent-
50a) and H. It is worth mentioning that, depending on the
nature of the silver salt (AgTFA or Ag,PO;), either the C—H
activation event or iodine abstraction was suggested to be the
rate-determining step.

The asymmetric formation of C(sp’)—F bonds has been
achieved in the last two decades through different strategies.”
In sharp contrast, the transition-metal-catalyzed enantioselec-
tive direct fluorination of a C(sp®)—H bond is a highly difficult
and appealing task and needs to be further investigated. To
tackle this synthetic challenge, Yu and co-workers developed a
new methodology based on the Pd(II)-catalyzed enantiose-
lective fluorination of C(sp*) centers using a chiral transient
directing group.*® They anticipated that the design and use of a
suitable ligand in this Pd(1I)/Pd(IV) process would be crucial
to successfully promote the C(sp®)—F bond formation in an
enantioselective fashion over the side-competitive reductive
eliminations (C—C or C—X bond formation) from Pd(IV)
species’” and the undesirable Sy2-type reactions over C(sp>)—
Pd(IV)—F intermediates.”” Instead of using an amino acid, it
was discovered that the combination of the amide I (derived
from v-tert-leucine) along with 2,3,4,5,6-pentafluorobenzoic
acid allowed the fluorination of the trifluoromethylated
benzaldehyde derivative 51a on a secondary C(sp®) center in
the presence of N-fluoro-2,4,6-trimethylpyridinium tetrafluor-
oborate as the fluorinating reagent (Scheme 21). A panel of
aromatic aldehydes was functionalized, leading to the expected
products 52b—j in yields up to 61% and enantiomeric excesses
ranging between 86 and 99%. Even though the competitive
pathway that led to the formation of the undesired C(sp*)—O
bond formation by an Sy2-type process could not be
completely circumvented, moderate to excellent ratios in
favor of the fluorinated products were obtained (5:1 to >20:1).
Benzaldehydes bearing alkyl chains longer than an ethyl group
at the ortho position were also suitable and furnished the best
enantiomeric excesses and the best C(sp*)—F:C(sp*)—O ratio
(>20:1), albeit with lower yields (52b,c). Moreover,
benzaldehydes substituted with electron-withdrawing groups
(CO,Me, COiPr, NO,; 51d—f) at the meta position were
successfully functionalized. Although electron-rich substrates
turned out to be inefficient in this transformation, the
fluorination was achieved when the disubstituted benzaldehyde
S1g was used. Note that the tetraline derivative S1h, the ortho-
fluorinated aldehyde S51i, and the pyridine 51j were also
suitable substrates in this transformation. On the basis of
mechanistic investigations and literature data,” the authors
suggested that a cationic Pd(IV) intermediate would be the
key intermediate in this transformation and would favor the
fluorination reaction over the C(sp*)—O bond formation.

6. SUMMARY

Over the past few years, transition-metal-catalyzed enantiose-
lective transformations by C—H bond activation have been
developed as a powerful tool for the construction of interesting
chiral molecules. In particular, the use of the chiral transient
directing group strategy was appealing, offering potent
synthetic solutions to challenging asymmetric transformations.
In this review, a general overview of the recent groundbreaking
advances made in this field was given. Original methodologies
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Scheme 21. Pd(II)-Catalyzed Enantioselective Fluorination
of Secondary C(sp*)—H Bonds®
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based on the astute use of chiral transient directing groups for
the enantioselective synthesis of biaryls, as well as chiral
heterocycles and carbocycles, were developed. In addition, this
strategy was successfully applied to the challenging enantiose-
lective C(sp*)—H bond functionalization. Even though major
breakthroughs were achieved, this modern and sustainable
strategy is still in its infancy. Indeed, so far only aldehyde and
ketone derivatives have been used as substrates to provide the
chiral transient directing group by the reversible formation of
an imine and, in most cases, acidic reaction conditions were
necessary, which hampered the general use of this strategy. To
widen the scope of these transformations, the use of amine
derivatives as substrates and, more generally, the reversible
formation of other functional groups playing the role of chiral
transient directing groups are expected to be explored.
Moreover, most of the transformations have been limited to
the formation of C—C or C—F bonds, although in the last case,
only a single example was reported. Therefore, there is an
urgent need to further explore other transformations. Finally,
the enantioselective functionalization of unactivated aliphatic
derivatives and the use of earth-abundant 3d transition metals

have not yet been achieved, and any advances using the chiral
transient directing group strategy will bring significant
breakthroughs. We do believe that this novel tool will be
inspiring for the scientific community and milestones will be
reached in the forthcoming years, expanding the chemical
space for asymmetric transformations.
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