Oxidative Coupling of NH Isoquinolones with Olefins Catalyzed by Rh(III)

Fen Wang,†‡, Guoyong Song,† Zhengyin Du,*‡ and Xingwei Li,*†

†Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
‡College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

ABSTRACT: Rh(III)-catalyzed oxidative coupling reactions between isoquinolones with 3-aryl groups and activated olefins have been achieved using anhydrous Cu(OAc)₂ as an oxidant to give tetracyclic products. The nitrogen atom acts as a directing group to facilitate ortho C–H activation. This reaction can be one-pot starting from methyl benzohydroxamates, without the necessity of the isolation of isoquinolone products. A broad scope of substrates has been demonstrated, and both terminal and internal activated olefins can be applied. In the coupling of N-methylmaleimide, a Wacker-like mechanism was proposed, where backside attack of the NH group in isoquinolones is suggested as a key step. Selective C–H activation has also been achieved at the 8-position of 1-naphthol, leading to an olefination product.

In the past decade, oxidative functionalization of C–H bonds, particularly sp² C–H bonds, that proceeds via a C–H activation pathway has attracted increasing attention, and synthetic methods based on these strategies provide powerful tools to construct complex structures. Metal-catalyzed direct C–H activation followed by oxidative functionalization with alkenes (the oxidative Heck-type reaction) has emerged as an attractive and atom-economic alternative to the traditional Heck coupling because each partner is minimally functionalized and no prior activation of the coupling partner is necessary. It is well-known that palladium catalysts have been predominantly used for this type of transformation, although other metals such as ruthenium have also been reported.

Rhodium catalysts stand out in the area of C–H functionalization via C–H activation pathway either in redox or redox-neutral reactions. The wide applications of rhodium catalysts in C–H activation is due to their wide functional group tolerance, high selectivity, and compatibility with oxidants. Despite the rather limited examples of rhodium-catalyzed oxidative Heck reactions, there is rapidly increasing interest in using low loading of Rh(III) complexes that give high selectivity and broad substrate scope (Scheme 1). Recently, Miura and Satoh, Glorius, and Ellman and Bergman, and we have made some progress in rhodium-catalyzed cross-coupling between olefins and arenes under chelation assistance. We now report the oxidative olefination of NH isoquinolones and 1-naphthol.

We recently reported Rh(III)-catalyzed oxidative coupling of benzamides with activated olefins leading to γ-lactams, with the olefination product proposed as an intermediate (eq 1). Here the role of amide as a directing group is significant. Understanding, designing, and exploring other readily installable directing groups should be an important task that serves to expand the synthetic utility of Rh(III)-catalyzed coupling reactions. We have also reported that either the N or the O atom in NH isoquinolones (tautomers of 1-hydroxyisoquinolones) can act as an efficient directing group to achieve activation of proximal C–H bonds and subsequent oxidative functionalization with alkenes (eq 2). Given functional similarities between alkenes and alkynes, we anticipate that NH isoquinolones, together with structurally related 1-naphthols, can undergo oxidative olefination with activated alkenes such as acrylates. Notably, three types of products as given in eq 3 can be envisioned, as a result of chemoselectivity of C–H activation and regioselectivity of olefin insertion. In fact, products of the types A and B are reported in this work.

Received: February 4, 2011
Published: March 17, 2011
We initiated our exploration with an attempt to oxidatively couple benzyl acrylate with NH isoquinolone 1a. Importantly, novel synthesis of 1a and its analogues was recently reported by Fagnou and co-workers under redox-neutral conditions using a combination of [RhCp*Cl2]2 (2.5 mol %) and CsOAc (30 mol %) starting from readily available methyl benzohydroxamate [PhC(O)NH(OMe)] and an alkyne (MeOH, 60 °C). This important synthetic method allows easy access to a variety of NH isoquinolones. We found that our previously reported conditions for the coupling of benzamides with benzyl acrylate (eq 1, 4 mol % of [RhCp*Cl2]2, 2.1 equiv of Ag2CO3, MeCN, 115 °C) proved successful, and 3a was isolated as the only product in 83% yield. The structure of this product was elucidated on the basis of NMR spectroscopy and mass spectrometry. In particular, 13C NMR spectroscopy revealed that two CH2 groups are present. This reaction possibly proceeds via an oxidative olefination-hydroamination cascade. The efficiency of this reaction was further improved when Cu(OAc)2 (2.2 equiv) was used as an inexpensive oxidant, where the catalyst loading can be reduced to 2 mol %. Under these improved conditions (conditions A), product 3a was isolated in comparably high yield (eq 4). In contrast, no coupling reaction was observed when the olefin was replaced by styrene.

Since the same catalyst [RhCp*Cl2]2 was used both in the redox-neutral preparation of NH isoquinolines and in their oxidative functionalization with alkynes, we reasoned that an overall one-pot synthesis of products 3 could be achievable from methyl benzohydroxamate. Indeed, when methanol solvent was evacuated after the completion of the reaction between methyl benzohydroxamate and alkyne, addition of Cu(OAc)2, benzyl acrylate (115 °C), and MeCN provided a suitable set of conditions for oxidative olefination (conditions B). Under these conditions, 3a was obtained in an overall yield of 78%. This also suggests that the presence of a catalytic amount of CsOAc has essentially no detrimental effect on the oxidative olefination step.

With the optimized conditions in hand, we explored a series of substrates under both one-pot and stepwise conditions. Isolated NH isoquinolone 1a readily coupled with a few acrylates to give 3a–e in isolated yields ranging from 55 to 86% (Table 1). Other activated alkenes such as an acrylamide and an acrylonitrile can be applied, although relatively lower yields of 3f (50%) and 3g (58%) were obtained under conditions B. In these cases, the reactions are quite selective, and most of the unreacted 1a was recovered. The scope of isoquinolones was further defined in the coupling with benzyl acrylate under conditions A. Isolated isoquinolones bearing electron-donating (see 3i, 3j, and 3m) and -withdrawing groups (see 3h, 3k, 3k′, and 3l) in the phenyl ring are applicable, although introduction of a highly withdrawing m-CF3 group tends to slow down this coupling reaction (3h). When an m-methyl-substituted methyl benzohydroxamate was used under either conditions A or B, 3i was isolated as the only product. In contrast, when an m-fluoro-substituted methyl benzohydroxamate was allowed to react with benzyl acrylate under the one-pot conditions, two regioisomers were isolated as analytically pure products in similar yields (41% for 3k and 45% for 3k′). The low regioselectivity of C–H activation in the first step is most likely ascribed to the reduced steric bulk of a fluoro group and/or its directing effect. Using isolated isoquinolones synthesized from other symmetrically substituted alkynes (ArC≡CAr) for oxidative olefination also proved successful, and both electron-donating and -withdrawing groups in the Ar group can be tolerated. Thus 3o and 3p were isolated in high yield. In addition, an isoquinolone derived from an unsymmetrically substituted alkyne (MeC≡CPH) underwent smooth coupling with benzyl acrylate to give 3n in high yield, with the methyl group oriented distal to the nitrogen, which is consistent with previous reports. In contrast to the above success, (isolated) NH isoquinoline 4 obtained from the reaction of 4-octyne and PhCl(O)NH2 failed to give any desired coupling with benzyl acrylate (eq 5) even with 4 mol % loading of the catalyst, indicating that neither the C–H bond in
the alkyl chain nor the C–H bond ortho to the carbonyl group underwent C–H activation. This is in contrast to the observed oxidative coupling of 4 and analogues with alkynes, where C–H activation occurred at the position ortho to the carbonyl group.17a

The alkene substrate is not limited to a terminal one. Internal alkenes bearing vicinal withdrawing groups also coupled with 1a under the standard conditions A to give analogous products. Thus 3r was isolated in 40% yield when N-methylmaleimide was used, and product 3s was obtained in similar yields starting from either diethyl maleate or fumarate. In all of these cases, unreacted starting material 1a was essentially fully recovered.

We reasoned that the olefination intermediate given in eq 4 cannot be a reasonable one in the reaction of 1a and N-methylmaleimide if this coupling follows a cyclometalation–olefin
insertion—β-H elimination process (the Heck-like mechanism) (Scheme 2). This is because both olefin insertion and β-H elimination occur via a syn-coplanar, four-membered ring transition state, and the cyclic character of this olefin obviates the possibility of β-H elimination. A plausible Wacker-like mechanism to account for the observed reaction is proposed in Scheme 2. Coordination of the olefin on Rh(III) center serves to activate the C=C bond toward nucleophiles. Backside attack of the NH group in 1a at the activated olefin is proposed to give a trans hydroamination (amidorotation) product (D),20 β-Hydride elimination of D is proposed and is followed by reinsertion into olefin intermediate E, which gives rise to the isomerization of the intermediate D to a Rh(III) species F.21 Subsequent cyclometalation of F is proposed to give a rhodacycle G, from which C=C reductive elimination occurs to afford the final product. In contrast to the proposed cyclometalation of intermediate F, no such process is suggested for intermediate D which eventually gives product C (eq 3). This is likely because intermediate F can lead to a favorable six-membered ring rhodacyclic intermediate instead of a seven-membered one for D, although the rhodium center is in a sterically more hindered environment in F. This catalytic cycle is completed when the resulting Rh(I) species is oxidized by Cu(II) to regenerate the Rh(III) species.

Although in principle NH isoquinolones can be regarded as special phenols, where the OH can act as a directing group and although we have observed17a that oxidative olefination did occur between simple 1-hydroxyisoquinoline and acrylates at the 8-position, no C=C activation at the 8-position of compound 4 could be achieved under our optimized conditions (eq 5). These big differences between simple 1-hydroxyisoquinoline and 4 may be ascribed to steric effects, and this inspired us to explore structurally related 1-naphthols as possible substrates. Indeed, 1-naphthols have been successfully employed as a partner in oxidative coupling with internal alkynes.22 However, no oxidative coupling with any olefin has been reported. Gratifyingly, the coupling of 1-naphthol and benzyl acrylate gave two expected products 5 and 6 in 5 and 38% isolated yield, respectively, although this reaction suffers from moderate selectivity (eq 6). Here the major isolated product 6 is derived from intramolecular hydroalkoxylation of the olefination product 5. Heating (115 °C) a CD3CN solution of product 5 gave essentially no formation of 6, indicating that this intramolecular hydroalkoxylation process is metal-catalyzed. Importantly, when the reaction solvent was changed to DMF (100 °C), the reaction is much more efficient and selective, and product 5 was isolated as the only product in 81% yield, highlighting significant solvent effect in the oxidative coupling between 1-naphthol and an acrylate.

In conclusion, we have successfully developed Rh(III)-catalyzed oxidative coupling between functionalized NH isoquinolones and activated olefins using Cu(OAc)2 as an oxidant to give tetracyclic products. The N atom acts as a directing group for ortho C—H activation in the 3-aryl group of NH isoquinolones. Significantly this reaction can be one-pot starting from methyl benzohydroxamates without the isolation of isoquinolones. A broad scope of substrates has been demonstrated, and both activated terminal and internal olefins are an efficient coupling.

Scheme 2. Plausible Mechanism of the Coupling of an Internal Olefin with an NH Isoquinolone
partner. In the coupling of N-methylmaleimide, a Wacker-like mechanism was proposed, where backside attack of the NH group in isoquinolones is proposed to give an intermediate that isomerizes and subsequently leads to cyclometalation. When no 3-aryl group is present in NH isoquinolone substrates, neither the N nor the OH group can act as an efficient directing group for C—H activation. Selective C—H activation was successfully achieved at the 8-position of 1-naphthol, leading to an olefination product under similar conditions. The broad selection of the two coupling partners and the diversity of the coupling products should make this method a useful one in the synthesis of complex structures.

EXPERIMENTAL SECTION

General Considerations. All rhodium-catalyzed reactions were carried out using standard Schlenk techniques or in a nitrogen-filled drybox. All solvents were distilled under N$_2$ prior to use. H1 and 13C NMR spectra were recorded using CDCl$_3$ as a solvent on a 400 or 500 MHz spectrometer at 298 K. The chemical shift is given in dimensionless δ values and is referenced relative to TMS in 1H and 13C NMR spectroscopy. High-resolution mass spectra were obtained on a LC-Q-TOF-MS spectrometer. All other reagents were obtained from commercial sources. Anhydrous Cu(OAc)$_2$ was used throughout this work. NH isoquinolones18 and compound 41 were synthesized according to literature reports.

Representative Procedure of the Synthesis of 3a—s. Conditions A: NH isoquinoline 1a (148.7 mg, 0.50 mmol), Cu(OAc)$_2$ (119.8 mg, 1.10 mmol, 2.2 equiv), and [RhCl$_2$(PPh$_3$)$_2$] (6.2 mg, 2 mol %) were weighed into a 25 mL pressure tube, to which acetoneitrile (4 mL) was added. After purged with nitrogen, benzyl acrylate (162.2 mg, 1.00 mmol, 2 equiv) was added via a syringe. The reaction tube was sealed, and the mixture was stirred at 115 $^\circ$C for 16 h. The mixture was diluted with CH$_2$Cl$_2$ (10 mL) and was filtered through Celite, followed by removal of volatiles under reduced pressure. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether. Yield: 86% (197 mg, 0.43 mmol).

Conditions B: Ph(CO)(O)NH(O)Me (76 mg, 0.5 mmol), diphenyletylene (89 mg, 0.5 mmol), [RhCl$_2$(PPh$_3$)$_2$] (9.3 mg, 3 mol %), and CuOAc (29 mg, 50 mol %) were weighed into a pressure tube. Methanol (4 mL) was added, and the mixture was stirred at 60 $^\circ$C for 14 h. After removal of methanol under reduced pressure, Cu(OAc)$_2$ (181 mg, 1.0 mmol) and acetoneitrile (4 mL) were added. The tube was sealed, and the mixture was stirred at 115 $^\circ$C for 12 h. The mixture was then diluted with CH$_2$Cl$_2$ (10 mL) and was filtered through Celite. All volatiles were then removed under reduced pressure. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether; yield 78% (178 mg, 0.39 mmol); 1H NMR (400 MHz, CDCl$_3$) δ 8.53 (d, $J = 4.0$ Hz, 1H), 7.37–7.50 (m, 4H), 7.21 (t, $J = 7.4$ Hz, 1H), 7.44 (d, $J = 7.6$ Hz, 1H), 7.53 (dd, $J = 7.4$, 7.2 Hz, 1H), 7.07 (t, $J = 7.6$ Hz, 1H), 6.35 (d, $J = 8.0$ Hz, 1H), 6.03 (dd, $J = 7.2$, 3.6 Hz, 1H), 5.06–5.13 (m, 2H), 3.77 (dd, $J = 16$, 3.6 Hz, 1H), 3.19 (d, $J = 16$, 7.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 170.1, 157.6, 142.4, 138.2, 137.6, 135.5, 133.5, 132.7, 130.6, 129.3, 128.8, 128.0, 127.9 (two overlapping signals), 127.1, 126.6, 125.6, 124.7, 123.5, 121.7, 119.4, 66.3, 59.9, 36.4; IR 1733, 1652, 1622, 1476, 1157, 765, 698 cm$^{-1}$; HRMS (ESI) calc for [C$_{26}$H$_{21}$NO$_3$ + H]$^+$ 424.1907; found 424.1912.

Compound 3d: Yield 81% (conditions A); 1H NMR (400 MHz, CDCl$_3$) δ 8.53 (d, $J = 7.6$ Hz, 1H), 7.34–7.62 (m, 7H), 7.30–7.36 (m, 2H), 7.18 (d, $J = 4.0$ Hz, 1H), 6.99 (d, $J = 8.0$ Hz, 1H), 6.03 (dd, $J = 7.6$, 3.6 Hz, 1H), 1.99 (s, 3H, CH$_3$); 13C NMR (125 MHz, CDCl$_3$) δ 170.4, 167.1, 146.2, 141.5, 137.1, 135.4, 133.6, 132.4, 131.0, 129.5, 129.3, 128.4, 127.5, 124.9, 119.4, 64.0, 60.6, 4.0, 12.8; HRMS (ESI) calc for [C$_{26}$H$_{21}$NO$_3$ + H]$^+$ 424.1907; found 424.1912.

Compound 3e: Yield 81% (conditions A); 1H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, $J = 7.6$ Hz, 1H), 7.51–7.62 (m, 6H), 7.47–7.55 (m, 1H), 7.33–7.37 (m, 2H), 7.21 (d, $J = 8.4$ Hz, 1H), 7.10 (t, $J = 7.6$ Hz, 1H), 6.93 (d, $J = 8.0$ Hz, 1H), 5.98 (dd, $J = 7.2$, 3.2 Hz, 1H), 3.56 (dd, $J = 12$, 4.1 Hz, 1H), 3.22 (d, $J = 16$, 8.0 Hz, 1H), 1.26 (s, 9H, 3CH$_3$); 13C NMR (125 MHz, CDCl$_3$) δ 169.4, 160.9, 141.6, 138.7, 138.1, 135.3, 133.6, 132.1, 131.0, 129.5, 129.4, 129.3, 128.4, 127.8, 127.3, 126.3, 125.2, 124.9, 122.9, 114.5, 64.6, 60.1, 36.5, 19.0, 13.6; IR 1736, 1645, 1612, 1472, 1176, 764, 701 cm$^{-1}$; HRMS (ESI) calc for [C$_{26}$H$_{21}$NO$_3$ + H]$^+$ 424.1907; found 424.1912.

Notes

2930

The Journal of Organic Chemistry

NOTE

Compound 3i. Yield 88% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 8.0, 1.0 Hz), 7.92 (d, J = 8.0 Hz, 1.77), 7.7 (d, J = 8.0, 7.6 Hz), 1.66 – 7.70 (m, 3H), 3.91 (d, J = 8.0 Hz, 1.77), 3.57 – 3.63 (m, 2H), 7.14 (d, J = 2.5 Hz, 1.71), 5.88 (d, J = 7.5, 4.0 Hz, 1.70), 0.81 (s, 2H, CH2), 3.64 (d, J = 16.0, 4.0 Hz, 1.71), 3.42 (d, J = 16.0, 4.0 Hz, 1.70), 2.60 (s, 2H, CH2); 13C NMR (125 MHz, CDCl3) δ 170.1, 160.6, 141.5, 137.7, 135.3, 134.4, 132.1, 129.7, 128.4, 128.2, 128.1, 127.7, 126.2, 125.1, 124.3, 123.1, 108.2, 66.5, 58.6, 37.1, 14.4; IR 1729, 1648, 1618, 1383, 1159, 763, 694 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 488.1864; found 488.1864.

Compound 3o. Yield 89% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 7.6, 1.1 Hz), 7.60 – 7.65 (m, 3H), 3.73 – 3.83 (m, 3H), 0.64 (s, 4H, CH2); 13C NMR (125 MHz, CDCl3) δ 170.1, 160.6, 141.5, 137.7, 135.3, 134.4, 132.1, 129.7, 128.4, 128.2, 128.1, 127.7, 126.2, 125.1, 124.3, 123.1, 108.2, 66.5, 58.6, 37.1; IR 1729, 1648, 1618, 1383, 1159, 763, 694 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 488.1948; found 488.1948.

Compound 3p. Yield 84% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 7.6, 1.1 Hz), 7.60 – 7.65 (m, 3H), 3.73 – 3.83 (m, 3H), 0.64 (s, 4H, CH2); 13C NMR (125 MHz, CDCl3) δ 170.1, 160.6, 141.5, 137.7, 135.3, 134.4, 132.1, 129.7, 128.4, 128.2, 128.1, 127.7, 126.2, 125.1, 124.3, 123.1, 108.2, 66.5, 58.6, 37.1, 14.4; IR 1729, 1648, 1618, 1383, 1159, 763, 694 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 488.1948; found 488.1948.

Compound 3q. Yield 83% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 7.6, 1.1 Hz), 7.60 – 7.65 (m, 3H), 3.73 – 3.83 (m, 3H), 0.64 (s, 4H, CH2); 13C NMR (125 MHz, CDCl3) δ 170.1, 160.6, 141.5, 137.7, 135.3, 134.4, 132.1, 129.7, 128.4, 128.2, 128.1, 127.7, 126.2, 125.1, 124.3, 123.1, 108.2, 66.5, 58.6, 37.1, 14.4; IR 1729, 1648, 1618, 1383, 1159, 763, 694 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 488.1948; found 488.1948.

Compound 3r. Yield 77% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.51 (d, J = 8.0, 1.1 Hz), 7.45 (t, J = 8.0 Hz, 1.75), 7.19 – 7.29 (m, 2H), 0.78 – 1.15 (m, 2H), 6.67 (d, J = 8.8 Hz, 1.71), 5.91 (d, J = 5.2 Hz, 1.72), 3.95 (s, 3H, CH3), 3.80 (s, 3H, CH3), 3.66 (d, J = 16.0, 3.0 Hz, 1.72), 3.14 (s, 2H, CH2), 4.17 (d, J = 16.0, 4.0 Hz, 1.71); 13C NMR (125 MHz, CDCl3) δ 170.3, 160.9, 159.5, 143.8, 139.3, 138.4, 132.5, 132.6, 132.4, 132.3, 132.0, 128.4, 128.1, 127.8, 127.3, 126.2, 125.7, 125.1, 124.9, 124.3, 114.3, 114.8, 111.2, 107.6, 65.6, 59.8, 55.4, 56.3, 36.7; IR 1697, 1511, 1245, 1174, 1030, 766, 339 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 518.1962; found 518.1970.

Compound 3s. Yield 75% (conditions A); 1H NMR (400 MHz, CDCl3) δ 8.50 (d, J = 8.0 Hz, 1.75), 7.47 (t, J = 8.0 Hz, 1.75), 7.19 – 7.29 (m, 2H), 0.78 – 1.15 (m, 2H), 6.67 (d, J = 8.8 Hz, 1.71), 5.91 (d, J = 5.2 Hz, 1.72), 3.95 (s, 3H, CH3), 3.80 (s, 3H, CH3), 3.66 (d, J = 16.0, 3.0 Hz, 1.72), 3.14 (s, 2H, CH2), 4.17 (d, J = 16.0, 4.0 Hz, 1.71); 13C NMR (125 MHz, CDCl3) δ 170.3, 160.9, 159.5, 143.8, 139.3, 138.4, 132.5, 132.6, 132.4, 132.3, 132.0, 128.4, 128.1, 127.8, 127.3, 126.2, 125.7, 125.1, 124.9, 124.3, 114.3, 114.8, 111.2, 107.6, 65.6, 59.8, 55.4, 56.3, 36.7; IR 1697, 1511, 1245, 1174, 1030, 766, 339 cm⁻¹; HRMS (ESI) calcd for [C26H18N2O3+H]⁺ 518.1962; found 518.1970.
The Journal of Organic Chemistry

NOTE

1H, 5.33 (s, 2H, CH2); 13C NMR (125 MHz, CDCl3) δ 168.4, 168.3, 139.6, 138.8, 138.3, 134.9, 134.2, 132.2, 131.1, 131.0, 129.4 (two overlying signals), 129.2, 128.5, 127.5, 126.4, 125.2, 125.1, 124.0, 121.6, 114.6, 72.1, 62.5, 60.1, 56.8, 13.9, 13.6; IR 1735, 1662, 1472, 1254, 1030, 765, 703 cm⁻¹; HRMS (ESI) calcd for [C29H25NO5 + H]+ 546.1805; found 546.1812.

Compound 5. Yield 81% (using DMF as a solvent) or 5% (using MeCN as a solvent). 1H NMR (400 MHz, CDCl3) δ 9.33 (d, J = 16.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.53–7.55 (m, 2H), 7.34–7.47 (m, 7H), 7.27–7.31 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.34 (d, J = 15.6 Hz, 1H), 5.33 (s, 2H, CH2); 13C NMR (125 MHz, CDCl3) δ 168.7, 154.1, 151.1, 135.9, 135.8, 132.8, 130.4, 128.6, 128.3, 128.2, 126.4, 125.9, 125.5, 122.4, 120.5, 117.3, 111.1, 66.8; IR 1689, 1617, 1346, 1173, 819, 748, 695 cm⁻¹; HRMS (ESI) calcd for [C20H16O3 + H]+ 305.1172; found 305.1165.

Compound 6. Yield 38% (using MeCN as a solvent). 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.0 Hz, 1H), 7.30–7.45 (m, 7H), 7.24 (dd, J = 8.4, 3.6 Hz, 1H), 7.11 (d, J = 6.8 Hz, 1H), 6.70 (dd, J = 7.6, 3.6 Hz, 1H), 6.35 (t, J = 7.2 Hz, 1H), 5.23 (d, J = 12.0 Hz, 1H), 5.20 (d, J = 12.0 Hz, 1H), 2.92–3.08 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 169.7, 160.3, 140.5, 135.5, 131.7, 129.8, 128.5 (two overlying signals), 128.29, 128.26, 128.0, 115.8, 115.6, 101.1, 84.4, 66.7, 40.9; IR 1730, 1596, 1489, 1376, 1169, 949, 756, 615, 492 cm⁻¹; HRMS (ESI) calcd for [C28H16O4 + H]+ 368.0959; found 368.0956.

ASSOCIATED CONTENT

Supporting Information. NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: clinton_du@126.com; zwlii@dicp.ac.cn.

ACKNOWLEDGMENT

We thank the Dalian Institute of Chemical Physics, Chinese Academy of Sciences for financial support. This work was also supported by the NSFC (No. 21072188).

REFERENCES

