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ABSTRACT: We report an asymmetric dearomatization reaction of enyne-tethered biaryls through Pd(0)/chiral phosphoric acid
cocatalyzed intramolecular hydrofunctionalization, furnishing spirocyclic hexenones and indolenines with fair to excellent
enantioselectivity. A Pd(0) π-Lewis base-promoted protonation may be involved, and chiral phosphate anion plays a key role in
enantiocontrol.

Spirocyclic hexanones and indolenines are privileged
scaffolds in organic synthesis and medicinal chemistry,

exemplified by their presence in bioactive natural products
such as spirobacilene A, stepharinine, and spirobacilene B
(Figure 1).1 However, their efficient synthesis remains
fundamentally challenging due to the construction of the
sterically congested quaternary spirocyclic center, which
presents significant kinetic and thermodynamic barriers.2

Catalytic asymmetric dearomatization (CADA) has emerged
as a powerful strategy for furnishing three-dimensional,
stereochemically rich spirocyclic scaffolds from readily
available planar aromatic feedstocks.3 Notably, the dearoma-
tization of biaryl substrates through metal-catalyzed CADA
represents an efficient and straightforward approach to
accessing valuable spirocyclic hexenone and indolenine
frameworks. In this context, Luan and co-workers developed
a palladium-catalyzed dynamic kinetic asymmetric trans-
formation of bromo-substituted naphthol derivatives with
alkynes, which proceeded through an oxidative addition/
migratory insertion/cyclization cascade to deliver the expected
spirocycles (Scheme 1a, top).4 Zhang and Jiao further
extended this strategy to the indole analogues with remarkable

efficiency, respectively.5 Moreover, You and Shi independently
uncovered asymmetric dearomatization of naphthols via
transition metal-catalyzed C−H activation followed by similar
reaction with alkynes (Scheme 1a, bottom).6 While these
methods achieved excellent efficiency and enantioselectivity,
they inevitably required bromo-functionalized starting materi-
als (leading to halogen loss) or stoichiometric oxidants, which
compromises atom economy and limits functional-group
tolerance.

Alternatively, metal-catalyzed asymmetric hydrofunctionali-
zation of unsaturated hydrocarbons offers a more atom-
economic strategy for molecular construction.7 Our group has
recently established a cooperative Pd(0)/Brønsted acid
catalytic system that enabled asymmetric hydrofunctionaliza-
tion of dienes and enynes, wherein Pd(0) served as a π-Lewis
base to facilitate the protonation process.8 Building on these
works, we now disclose an asymmetric dearomatization process
of enyne-tethered biaryls 1 through Pd(0)/chiral phosphoric
acid (CPA)-catalyzed hydrofunctionalization (Scheme 1b). It
was envisaged that 1,3-enynes 1 would undergo protonation
with CPA via Pd(0) π-Lewis base activation, and the ene-π-
allylpalladium complexes I would participate in an intra-
molecular C2-regioselective alkylation with the assistance of a
chiral phosphoric anion, finally affording multifunctional
spirocyclic hexenone derivatives via enantioselective dearoma-
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Figure 1. Selected bioactive spirocyclic molecules.
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tization. In contrast to previous protocols, this oxidant-free
Pd(0)/CPA system avoids halogen prefunctionalization, there-
by improving atom economy and exhibiting broader functional
group tolerance.

The intramolecular hydrofunctionalization of 1,3-enyne 1a
was initially investigated using Pd2(dba)3/PPh3 and diphenyl
phosphate (A1) as the catalysts in toluene at 60 °C, and the
expected spirocyclic product 2a was obtained in good yield
(Table 1, entry 1). To establish an asymmetric variant, we first
evaluated chiral phosphoramidite L1 and phosphine L2 as the
ligands; however, they proved ineffective for enantiocontrol
(entries 2 and 3).9 Then we turned our attention to CPAs in
combination with Pd(PPh3)4. It was found that BINOL-
derived CPA A2 and A3 resulted in only low enantioselectivity
(entries 4 and 5). Notably, introducing sterically demanding
3,3′-substituents on the BINOL scaffold (A4 and A5)
dramatically improved the enantioselectivity (entries 6 and
7), suggesting that the crowded environments were helpful for
asymmetric induction. Further enhancement was achieved with
H8−BINOL derivatives A6 and A7 (entries 8 and 9).

Scheme 1. Transition Metal-Catalyzed CADA of Biaryls

Scheme 2. Substrate Scope of the CADA for the
Construction of Spirocyclic Hexenone Derivatives

Table 1. Condition Optimizations of the Asymmetric
Dearomatization of Substrate 1aa

entry [Pd] L A solvent yield (%)b ee (%)c

1 Pd2(dba)3 PPh3 A1 toluene 83 /
2 Pd2(dba)3 L1 A1 toluene 28 −9
3 Pd2(dba)3 L2 A1 toluene 52 16
4 Pd(PPh3)4 / A2 toluene 79 8
5 Pd(PPh3)4 / A3 toluene 87 7
6 Pd(PPh3)4 / A4 toluene 78 68
7 Pd(PPh3)4 / A5 toluene 72 71
8 Pd(PPh3)4 / A6 toluene 77 74
9 Pd(PPh3)4 / A7 toluene 87 78
10 Pd(PPh3)4 / A7 THF 76 20
11 Pd(PPh3)4 / A7 DCM 80 77
12d Pd(PPh3)4 / A7 toluene 86 83
13d,e Pd(PPh3)4 / A7 toluene 90 83
aUnless noted otherwise, the reaction was performed with 1a (0.05
mmol), [Pd] (5 mol %), L (6 mol %), and A (20 mol %) in solvent
(0.5 mL) at 60 °C for 12 h under Ar. bYield of the isolated product.
cDetermined by HPLC analysis on a chiral stationary phase. dIn 1.0
mL of toluene. eWith A7 (10 mol %).
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Subsequently, some commonly used solvents were tested, and
toluene was still the optimal solvent (entries 10 and 11). Fine-
tuning of the reaction parameters through decreasing
concentration and loadings of A7 further improved both
yield and enantioselectivity, providing 2a in an excellent yield
with good enantioselectivity (entries 12 and 13).

With the optimized conditions established, we explored the
substrate scope of the CADA reaction using 1,3-enyne-
functionalized biaryls 1. As shown in Scheme 2, the reaction
proceeded well on a 0.1 mmol scale, and 2a was obtained with
comparable data. The absolute configuration of 2a was
unambiguously determined by X-ray crystallography analysis.
In addition, various substituents on the phenyl ring of 1 were

generally tolerated well, delivering products 2b−j in high yields
with moderate to good enantioselectivity, whereas the ee value
of 2d was slightly diminished, probably due to the strong
electron-withdrawing effect of the trifluoromethyl group. The
protocol also accommodated a naphthalene-based enyne,
producing 2k in excellent yield with similar enantiocontrol.
An additional methyl group at the enyne moiety was also
compatible, affording 2l in a good yield albeit with low
enantioselectivity, likely due to steric congestion that perturbs
coordination and distorts the chiral pocket surrounding the
ene-π-allylpalladium intermediate (I). Notably, replacing the
naphthol moiety with a phenol group led to a dramatic
reduction in enantioselectivity (2m), probably because the
absence of the naphthol unit reduces favorable π−π
interactions between the substrate and the ligands.

Apart from naphthol-derived biaryls, we successfully applied
asymmetric hydrofunctionalization to indole-derived substrates
(3). The cooperative catalytic system of Pd(PPh3)4 and A7
was effective for the CADA of 3a,9 delivering spirocyclic
indolenine 4a in an excellent yield with good enantioselectivity,
even on a 1.0 mmol scale (Scheme 3). The reaction proved
applicable to diversely functionalized enynes 3 bearing varied
indole substituents, affording products 4b−j in high yields with
moderate to excellent enantioselectivity. Furthermore, sub-
strates with different substituents on the phenyl ring were
compatible, yielding 4k−p with high efficiency and moderate
to good enantiocontrol.

To demonstrate the synthetic versatility of these multifunc-
tional products, we performed a series of structural
elaborations (Scheme 4). The carbonyl group in 2j was
successfully transformed into an alkene via a Wittig reaction,
affording compound 5 in a high yield. In addition, the multiple
alkene groups in 2a underwent complete hydrogenation to
deliver 6 with excellent diastereoselectivity, which subse-
quently participated in a Fischer indolization with PhNHNH2·
HCl to construct fused indole derivative 7.10 The diene moiety

Scheme 3. Substrate Scope of the CADA for the
Construction of Spirocyclic Indolenines

Scheme 4. Synthetic Transformations of the Products
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of 2a proved reactive, enabling efficient construction of
spirocycle 8 through a Diels−Alder reaction with diethyl but-
2-ynedioate followed by oxidative aromatization. The exo-vinyl
group also chemoselectively undertook a 1,3-dipolar cyclo-
addition reaction with in situ formed nitrile oxide, and
isoxazole-containing product 9 was finally obtained in a good
yield after oxidation.11 Furthermore, reduction of the imine
moiety in spirocyclic indolenine 4q provided indoline 10,
which was then converted to sulfonamide 11.12 The absolute
configuration of 11 was unambiguously confirmed by an X-ray
crystallographic analysis. Moreover, oxindole 12 was yielded
via Pinnick oxidation of 4q, further highlighting the synthetic
potential of these scaffolds.13

To elucidate the reaction mechanism, we performed several
control experiments for the CADA reaction (Scheme 5).

Under the standard conditions, the asymmetric hydro-
functionalization of 1a proceeded efficiently, whereas a
significantly diminished yield was observed in the absence of
A7. In addition, no reaction occurred when Pd(II) was used
instead, clearly demonstrating that both the acid additive and
Pd(0) species are essential for reactivity. Furthermore, biaryl
13 possessing a sole alkyne group proved inert under the
standard catalytic conditions, highlighting the critical role of
the conjugated vinyl group in the transformation. These
experimental observations are consistent with a Pd(0) π-Lewis
base-promoted vinylogous activation mechanism.14

In conclusion, we have developed an efficient catalytic
asymmetric dearomatization process through Pd(0)/chiral
phosphoric acid cooperative catalysis, rendering an atom-
economical intramolecular hydrofunctionalization reaction of
enyne-tethered biaryl substrates. This protocol provided
efficient access to diverse spirocyclic hexenone and indolenine
derivatives with fair to excellent enantioselectivity. The
synthetic utility of these scaffolds was showcased through
various transformations, affording enantioenriched frameworks
with a higher molecular complex and skeletal diversity. The
experiments supported a reaction mechanism involving Pd(0)
π-Lewis base-mediated protonation, and chiral phosphate
counteranion was essential for the enantiocontrol in the
dearomative step, verifying such a dual catalytic system would
be a powerful paradigm for expanding the hydrofunctionaliza-
tion of more polyunsaturated substrates.
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