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Organic electrosynthesis has been widely used as an environmentally conscious alternative to conven-
tional methods for redox reactions because it utilizes electric current as a traceless redox agent instead
of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous atten-
tion, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, over-
potential of electron transfer can be avoided, which is inherently milder, thus wide functional group
tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be
tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be
avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts
include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and
tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the
field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes
including C–H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to
the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of
organic electrosynthesis are available, there is a lack of articles that focus on recent research progress
in the area of indirect electrolysis using transition metals, which is the impetus for this review.

� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Owing to the limited supply of fossil fuel resources and strict
cutbacks in carbon dioxide emission allowances, the development
of efficient, economical, safe, and sustainable synthetic practices is
increasingly important for the field of organic synthesis. Recently,
organic electrosynthesis has received significant research attention
since inexpensive, safe, sustainable, and readily accessible electri-
cal current is used as the ‘‘traceless” redox agent, replacing chem-
ical oxidants or reductants associated with conventional
approaches to redox transformations [1,2]. Organic electrosynthe-
sis, therefore, provides economical and sustainable synthetic
approaches and can limit side reactions and catalyst deactivation
promoted by chemical redox reagents [3]. In addition, the ability
to regulate electrical current and potential is a unique handle for
organic electrosynthesis, since chemists can tame redox transfor-
mations with a precision seldom seen using conventional
approaches [4]. Various electrochemical transformations have
been well developed and utilized for industrial commodity chem-
ical synthesis, such as the Kolbe reaction [5,6], the Simons fluorina-
tion process [7], and the Monsanto adiponitrile process [8], to
name a few. Combined with the standardization of electrolysis
devices [9,10], burgeoning mechanistic insights [11], and the
development of new redox catalysts [12–14], organic electrosyn-
thesis has become a powerful field wherein to showcase and pro-
mote sustainable practices and innovative strategies (Fig. 1a)
[15–20].

Organic electrosynthesis methods can be classified based on
whether they involve direct or indirect electrolysis [21]. In direct
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Fig. 1. (Color online) (a) Electrochemical synthesis: tunable electric current and potential; (b) a comparison of direct electrolysis and indirect electrolysis.
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electrolysis, in the case of oxidation at an anode, electricity-rather
than a chemical oxidant-drives electron transfer by shuttling elec-
trons between the surface of the electrode and the organic sub-
strates (Fig. 1bi). Electron transfer (ET) from and to an electrode
is a heterogeneous process that can be kinetically hindered result-
ing in over-potentials on the electrode surface. In addition, organic
compounds can be adsorbed on the electrode surface and thereby
reduce conductivity; in some cases, conductive polymer films can
be formed. If an insulating film is formed on an electrode surface,
the terminal voltage reaches the limit of a galvanostat and no cur-
rent can flow. Similarly, no electrical current will flow through an
electrochemical cell being run in galvanostatic (constant current)
mode. Indirect electrolysis can be helpful in circumventing the
aforementioned undesired processes [14]. Taking anodic oxidation
as an example again, in an indirect electrolysis, a redox catalyst is
used to shuttle electrons between the surface of the anode and the
organic substrates via outer-sphere or inner-sphere electron trans-
2413
fer (Fig. 1biii), hence the aforementioned limitations of direct elec-
trolysis can be avoided. The use of redox catalysts as homogeneous
electron transfer mediators (ETMs) frequently allows reactions to
occur at potentials that are substantially less positive (oxidations)
or less negative (reductions) than those required for direct electron
transfer at the electrode, thereby reducing energy consumption
and improving the energy efficiency of a reaction and complement-
ing the enhanced atom economy generated by avoiding the use of a
chemical oxidant or reductant. Overpotential of electron transfer
can be reduced, which equates to mild reaction conditions and
broader functional group tolerance. In addition, chemo-, regio-,
and stereo-selectivity outcomes can be manipulated by the cata-
lysts used in indirect electrolysis. Various homogeneous ETM’s
have been developed including N-oxyl radicals, hypervalent iodine
species, halides, amines, benzoquinones (DDQs), and transition
metals. Compared to other catalysts, transition metals are attrac-
tive because: (1) transition metal-catalyzed reactions are versatile
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and, in many cases, well understood; (2) the redox potentials of
transition metal catalysts may be tuned via ligand modification;
and (3) chemo-, regio-, and stereo-selectivity can be dictated by
the transition metal catalysts. Although various reviews on organic
electrosynthesis are available [21–26], this article will highlight
recent progress in indirect electrolysis using transition metal
catalysts.
2. Iron complex as an electrocatalyst

Iron is a naturally abundant transition metal and relatively
non-toxic. Ferrocene (Fc), an organometallic compound, is an
inexpensive single electron transfer catalyst. It was synthesized
by accident and was first reported by Kealy and Pauson [27] in
1951. Later on, Wilkinson, Woodward [28] and Fischer [29] sug-
gested that it had a ‘‘sandwich” structure, and officially named it
ferrocene. The development, understanding, and utility of
ferrocene inspired the development of organometallic chemistry
and organometallic electrochemistry [30–32]. Ferrocene can be
used as an ET-type catalyst in electrochemical reactions due to
its unique single ET redox properties. In recent years, many groups
reported ferrocene-catalyzed electrochemical transformations, in
which intermediates were mainly free radicals such as nitrogen-
centered radicals [33–40], carbon-centered radicals [41–45], and
some other radical ions [46–49].

Electrochemical oxidation provides a useful strategy to generate
N-centered radicals directly from amines and amides [50–52]. In
the past few years, Xu and co-workers [53] have carried out
extensive studies with ferrocene as a catalyst to access amidyl
radicals, which can react with olefins or alkynes by intramolecu-
lar addition. For instance, they have reported an interesting
example of intramolecular hydroamidation of olefins with 1,4-
cyclohexadiene (1,4-CHD) as a hydrogen atom donor, employing
Fc as the redox catalyst to generate amidyl radicals from N-aryl
amides (Fig. 2a) [33]. Owing to the relatively low oxidation poten-
tial of Fc, the electrochemical system exhibits broad functional
group compatibility. Mechanistically, the anode is proposed to oxi-
dize Fc to Fc+ while MeOH is reduced to H2 and MeO� at the cath-
ode. The latter deprotonates 1a to give the corresponding anion 1b,
which is readily oxidized by Fc+ via single electron transfer (SET) to
form the amidyl radical 3 and regenerate Fc. Upon cyclization of 3
with the tethered olefin and H-atom abstraction of the resulting
carbon radical 4 from 1,4-CHD or a solvent molecule, the final pro-
duct 2a is formed as shown in Fig. 2a. The use of a relatively non-
polar solvent, such as THF, is crucial to reduce the gap of oxidation
potential between ferrocene and 1b. In MeOH the difference in oxi-
dation potential between ferrocene and 1b was measured to be
460 mV but in THF/MeOH (5:1) the difference decreases to
60 mV, which prevents hydroamidation due to the lack of effective
SET between 1b and Fc+. Xu and co-workers [34] subsequently
developed a dehydrogenative annulation of 5 to afford a series of
functionalized indole and azaindole compounds (Fig. 2b). The use
of a Fc redox catalyst instead of direct electrolysis is crucial since
the annulation products have similar or lower oxidation potentials
than the starting materials. As a showcase of the methodology,
indole derivative 7e can be transformed into isocryptolepine 8 in
one step. This strategy using Fc as a redox catalyst also provides
an effective method to produce carbon-centered radicals. For
instance, Xu and co-workers [41] also reported a highly chemo-
selective electrochemical cross dehydrogenative coupling to afford
C3 fluorinated oxindoles (Fig. 2c). This method avoids decomposi-
tion of the heat and base-sensitive oxindole products. Iron has also
been explored as an electrochemical catalyst. For instance, in 2019,
Ackermann and co-workers [54] reported an electrochemical C�H
arylation using iron as a catalyst (Fig. 2d).
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3. Late transition metals as electrocatalysts

Over the past several decades, organic electrosynthesis employ-
ing late transition metal complexes as electrocatalysts has received
tremendous attention [13,55,56]. Late transition metal complexed
also transfer electrons to and from an electrode, but unlike conven-
tional redox catalysts such as Fc, they can catalyze reactions by the
formation of catalyst–substrate adducts. Because of the variability
of the valence state of late transition metals, they not only undergo
anodic oxidation but also cathodic reduction. Moreover, chemo-,
regio- and stereo-selectivities of the reactions they catalyze can
be tuned via modification of the organic ligand, thus providing
numerous possibilities for chemical transformations.
3.1. Palladium complexes

Electrochemical C–H functionalization is an appealing method
for the construction of C–C and C–Z (carbon-heteroatom) bonds
because it avoids prefunctionalization of the substrate [57]. How-
ever, direct electrochemical functionalization of C–H bonds is chal-
lenging from a chemoselectivity standpoint due to the high redox
potential of C–H bonds compared to common functional groups
and organic solvents [58,59]. In the past decade, palladium-
catalyzed selective functionalizations of primary C–H bonds prox-
imal to a suitable directing group has been extensively developed
[60–64]. However, stoichiometric chemical oxidants like Cu
(OAc)2, Ag2CO3, and hypervalent iodine reagents are typically
required. The use of these stoichiometric additives could be
avoided by integrating anodic oxidation [20,65,66]. Anodic oxida-
tion can be employed to oxidize Pd(0) to Pd(II) or to generate high
valent Pd(III) or Pd(IV) species from Pd(II), depending on the
catalyst.

Some early investigations on Pd-catalyzed electrochemical
arene C�H functionalization have been reported by the groups of
Amatore [67], Kakiuchi [68–71], and Budnikova [72–75]. Recently,
Mei and co-workers [76] developed a Pd-catalyzed electrochemical
C(sp3)–H acetoxylation reaction (Fig. 3a). Therein, direct anodic
oxidation of Pd(II) complexes putatively produces a Pd(IV) inter-
mediate that is prone to reductive elimination to give the C–H ace-
toxylation products while regenerating Pd(II) catalysts. Direct
comparison to chemical oxidation (specifically NaNO3/O2) [77]
demonstrated the superiority of anodic oxidation for this transfor-
mation. Sanford and co-workers [78] independently reported a
similar C(sp3)–H acetoxylation around the same time. Subse-
quently, Mei and co-workers demonstrated C(sp2)–H acetoxylation
[79], alkylation [80], acylation [80], and halogenation (Fig. 3b)
[81,82]. A divided cell is typically needed in these electrochemical
systems because high valent Pd species are prone to cathodic
reduction, which leads to catalyst deactivation or decomposition.
Electrochemical C–H alkylation of 2-phenylpyridine derivatives
could conducted in an undivided cell when a mixture of trifluo-
roethanol (TFE), acetic acid, and water is used as the solvent sys-
tem (Fig. 3b) [83]. In 2020, Lei and co-workers [84] reported a
Pd-catalyzed electrochemical intramolecular C�H/N�H annulation
reaction in an undivided cell (UC), affording a series of pyrido[1,2-
a]benzimidazoles. Mechanistic studies indicate that Pd(0) could be
recycled through via anodic oxidation (Fig. 3c). Recently, Acker-
mann and co-workers [85] demonstrated the first palladium-
catalyzed electrochemical asymmetric synthesis of axially chiral
biaryls via C–H olefinations in an undivided cell using a catalytic
amount of a transient directing group (TDG) (Fig. 3d). Other inter-
esting protocols that merge anodic oxidation and Pd catalysis have
also been reported [86–89].

Cathodic reduction can generate low-valent metal species
that are typically inaccessible using chemical reductants.



Fig. 2. (Color online) Iron-catalyzed electrochemical synthesis of heterocycles via N- or C-centered radicals. (a) Ferrocene-catalyzed electrochemical hydroamination of di-
and tri-substituted olefins via N-centered radicals [33]; (b) ferrocene-catalyzed electrochemical synthesis of (aza)indoles via amidyl radicals [34]; (c) ferrocene-catalyzed
electrochemical synthesis of C3-fuorinated oxindoles via C-centered radicals [41]; (d) iron-catalyzed electrochemical C�H arylations [54].
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Fig. 3. (Color online) Palladium-catalyzed electrochemical C–H functionalization and carboxylation. Palladium-catalyzed electrochemical (a) C(sp3)–H oxygenation [76], (b) C
(sp2)–H functionalization [83], (c) C–H amination [84], (d) enantioselective C–H olefination [85], and (e) reductive carboxylation [97].
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The combination of cathodic reduction with transition metal catal-
ysis could therefore not only improve existing chemical reactions,
but also allow the discovery of new reactions. In such a process, the
active transition metal species can be generated and recycled con-
tinually by cathodic reduction while the electrons are consumed
stoichiometrically by the substrates. In 1985, Torii and co-
workers [90] reported an early example of Pd-catalyzed electro-
reductive coupling of aryl halides to form biaryls in divided cells,
wherein biaryl formation occurs in the cathodic cell. In 2017,
Huang and co-workers [91] developed a Pd-catalyzed electrochem-
ical cross-coupling of alkyl and allyl halides in aqueous media. The
use of a Zn cathode is important for this reaction, which suggests
that Zn particles generated in situ might participate in the coupling
reactions.

Catalytic C–C bond-forming reactions that utilize CO2 to directly
access carboxylic acids are attractive transformations because CO2

is an ideal C1 synthon [92–95]. In 1986, Torii and co-workers [96]
reported an early example of Pd-catalyzed carboxylation of allyl
acetates with CO2 in divided cells, affording a mixture of branched
and linear carboxylic acids. In 2018, Mei and co-workers [97]
developed a regioselective Pd-catalyzed electrocarboxylation of
homostyrenyl acetates with CO2 using 1,2-bis(diphenylpho
sphino)benzene (DPPB) as the ligand and a Mg sacrificial anode,
affording a-aryl carboxylic acids in good selectivity in an undi-
vided cell (Fig. 3e). Of critical importance, the metal reductant
(Mn or Zn powder) does not give significant amounts of desired
products in the absence of electric current under otherwise identi-
cal conditions, which underscores the unique reactivity offered by
the merger of Pd catalysis and electrochemistry. Mechanistically,
Pd(OAc)2 undergoes cathodic reduction to give a Pd(0) species,
which reacts with the substrate via oxidative addition to give an
g1-allylpalladium(II) intermediates. Then the g1-allylpalladium
(II) species is reduced at the cathode to give a nucleophilic g1-
allylpalladium(0) complex which reacts with CO2 to deliver the
carboxylic acids. In addition, chiral bidentate triarylphosphine
ligands are suitable for modestly enantioselective carboxylations
(67% enantiomeric excess) (Fig. 3e).

3.2. Nickel complexes

Numerous nickel-catalyzed C–H functionalization methods
have been developed in recent decades. Ackermann and
co-workers [98] demonstrated the first example of carboxylate-
enabled Ni-catalyzed electrochemical C–H amination of benza-
mides with cyclic or acyclic amines in an undivided cell. More
electron-deficient arenes react faster in this electrochemical sys-
tem, suggestive of a concerted metalation deprotonation (CMD)
mechanism [99]. Anodic oxidation is responsible for recycling the
nickel catalyst and producing a Ni(IV) intermediate that undergoes
reductive elimination (Fig. 4a) [98]. The same group later demon-
strated electrochemical C–H alkoxylation with secondary alcohols
via a similar putative mechanism to the one shown in Fig. 4a [100].
In addition, Ackermann and co-workers [101] also reported an
intriguing example of Ni-catalyzed C–H alkylations of unactivated
8-aminoquinoline amides with primary or secondary alkyl iodides
at room temperature via cathodic reduction (Fig. 4b). Detailed
mechanistic studies suggest that the reaction involves a Ni(II/III/
I) catalytic cycle involving two SET steps. The groups of Xu, Zeng
and co-workers [102] also reported a Ni-catalyzed electrochemical
Minisci acylation of electron-deficient aromatic heterocycles with
a-keto acids. Cyclic voltammetric analysis suggested that the gen-
eration of the key acyl radicals may involve a ligand-to-metal
charge electron transfer (LMCT) process.

Ni-catalyzed electrochemical reductive coupling reactions have
been developed as powerful tools to join two electrophiles, includ-
ing reductive homo-coupling of aryl bromides [103], reductive
2417
cross-couplings of aryl and alkyl bromides [104–106], reductive
relay cross-couplings of aryl bromides (or chlorides) and aryl-
substituted alkyl bromides [107,108], and other transformations
[109–111]. Recently, Reisman and co-workers [112] reported the
first example of catalytic enantioselective reductive cross-
couplings of benzyl chlorides and alkenyl bromides using a chiral
Box ligand via cathodic reduction (Fig. 4c). Subsequently, Mei
and co-workers [113] demonstrated electrochemical Ni-catalyzed
enantioselective reductive homo-coupling of aryl bromides to
afford axially chiral BINOL derivatives in good yield and enan-
tiomeric excess (ee) (Fig. 4d). It is worth noting that, for compar-
ison, Mn or Zn powder gives significantly lower yields without
electric current under otherwise identical conditions. The plausible
catalytic cycle of these Ni-catalyzed electrochemical reductive cou-
pling reactions is shown in Fig. 4d.

The combination of nickel catalysis and paired electrolysis is
another powerful strategy for organic electrosynthesis. Baran and
co-workers [114,115] reported an elegant example of Ni-
catalyzed couplings of aryl (pseudo) halides and aliphatic amines
via paired electrolysis under mild conditions in an undivided cell.
Inspired by this seminal work, various electrochemical reductive
cross-couplings of aryl halides have been developed including
C–C [116,117], C–P [118–121], C–S [122–124], C–O [125–127],
and other bond-forming variants [128,129]. Most recently,
Mei and co-workers [130] employed a similar strategy for the
Ni-catalyzed N-arylation of NH-sulfoximines with aryl halides in
an undivided cell (Fig. 4e). Mechanistic studies indicate that the
anodic oxidation of a Ni(II) species is needed to promote reductive
elimination from a Ni(III) intermediate at room temperature and
thereby form the key C–N bond.

3.3. Cobalt complexes

In recent years, cobalt-catalyzed C�H functionalizations have
witnessed tremendous progress [131–133]. In 2017, Ackermann
and co-workers [134] reported one of the earliest examples of an
electrochemical cobalt-catalyzed C–H oxygenation of pyridine-N-
oxide-functionalized benzamides or alkenes 40 with various alco-
hols in divided cells under mild reaction conditions, wherein
reductive elimination is likely taking place from Co(IV) species
afforded by anodic oxidation (Fig. 5a). Excitingly, biomass-
derived c-valerolactone (GVL) proved to be the optimal solvent.
Subsequently, Ackermann and co-workers [135] demonstrated
Co-catalyzed electrochemical C–H amination of pyridine-N-
oxide-functionalized benzamides 42 with secondary amines under
similar reaction conditions (Fig. 5b). Around the same time, Lei and
co-workers [136] independently developed a similar transforma-
tion of benzamides 44 (Fig. 5c). Lei and co-workers [137] further
reported an elegant example of cobalt-catalyzed electrochemical
oxidative C–H/N–H carbonylation involving H2 release at the cath-
ode in an undivided cell (Fig. 5d). Various substituted benzamides,
acrylamides, and heterocyclic amides are well tolerated. Based on
X-ray absorption near edge structure (XANES) and cyclic voltam-
metry studies, a plausible Co(II/III/I) catalytic cycle was proposed
(Fig. 5d). Inspired by these works, various cobalt-catalyzed electro-
chemical C–H functionalization reactions have been developed
including acyloxylations [138], allylations [139], annulations
[140–145], and other transformations [146–148]. Besides the ano-
dic oxidation, the combination of cathodic reduction with cobalt
catalysis can also be applied to discovery new reactions [149–
151]. Very recently, Ackermann and co-workers [152] reported a
cobalt-catalyzed electroreductive carboxylation of allylic chlorides
with CO2 (Fig. 5e). According to IR spectroscopy and cyclic voltam-
metry studies, allyl-Co(III) complexes undergo cathodic reduction
to generate low-valent allyl-Co(I) complexes which then react with
CO2 to give the final carboxylation product.



Fig. 4. (Color online) Nickel-catalyzed electrochemical reactions. (a) Nickel-catalyzed electrochemical C�H functionalization [99]; (b) nickel-catalyzed electrochemical
C(sp2)�H alkylation [101]; (c) nickel-catalyzed enantioselective coupling of aryl halides and vinylic halides [112]; (d) nickel-catalyzed enantioselective synthesis of biaryls
via reductive coupling of aryl halides [113]; (e) nickel-catalyzed electrochemical C�H amination [130].
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Fig. 5. (Color online) Cobalt-catalyzed electrochemical (a) C�H oxygenation [134], (b) C�H amination [135], (c) C�H functionalization [136], (d) C�H/N�H carbonylation
[137], and (e) carboxylation [152].
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3.4. Ruthenium complexes

Like the aforementioned methods, in the absence of electricity,
ruthenium-catalyzed oxidative C�H functionalization reactions
typically require stoichiometric amount of oxidants, such as CuII

or AgI [153–155]. Xu and co-workers [156] demonstrated the first
example of a Ru-catalyzed electrochemical C–H annulation of ani-
Fig. 6. (Color online) Ruthenium-catalyzed electrochemical (a) dehydrogenative alkyne

2420
lines and alkynes to afford various indoles under mild reaction
conditions in undivided cells (Fig. 6a). Anodic oxidation is used
to recycle the active Ru catalyst and the cathode is used to promote
H2 evolution. Concurrently, Ackermann and co-workers [157]
reported an electrochemical Ru-catalyzed C–H annulation of ben-
zoic acids 54 with alkynes (Fig. 6b). The carboxyl group not only
directs the Ru-catalyzed C–H activation, but also annulates to
annulation [156], (b) C�H/C�O annulation [157], and (c) alkyne annulations [158].
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alkynes, ultimately affording derivatives of 1H-isochromen-1-one.
Based on their mechanistic studies, the key step of the catalyst
recycle appears to be the reoxidation of the ruthenium(0) complex
via anodic oxidation. Later, the same group [158] employed imida-
zoles as substrates in a ruthenium-catalyzed electrochemical
annulation with alkynes, wherein several azaruthena(II)-bicyclo[3
.2.0]heptadienes were prepared, isolated, and characterized. Based
on their mechanistic studies, anodic oxidation induced reductive
elimination was proposed (Fig. 6c). Zhong and co-workers [159]
applied a similar strategy to achieve the Ru-catalyzed dehydro-
genative [3 + 2] annulation to synthesize various indulines.

3.5. Rhodium complexes

Rhodium-catalyzed C–H functionalization has emerged as a
powerful method for construction of carbon–carbon (C–C) or
carbon–heteroatom (C–Y) bonds [160–164]. However, chemical
oxidants are typically required for Rh catalyst turnover. In 2018,
Ackermann and co-workers [165] reported an early example of
rhodium-electrocatalyzed C–H activation with benzoic acids and
acrylates as the weakly coordinating groups, affording derivatives
of 2-benzofuran-1(3H)-one as products (Fig. 7a). In addition to
benzoic acids, benzamides and N-pyrimidyl (pym) indoles are also
suitable substrates for this transformation. The catalytically active
pentamethylcyclopentadienyl rhodium(III) is regenerated via ano-
dic oxidation. Subsequently, the same group [166] developed an
elegant C�C activation for alkenylations, which demonstrates a
preference for C�C cleavage over C�H cleavage. With this C�C
activation strategy, 1,2,3-substituted arenes that are not easy to
access with known C�H functionalization methods are efficiently
produced (Fig. 7b). Transition metal-catalyzed C–H functionaliza-
tions are also useful method for the construction of C�P bonds.
In 2019, Xu and co-workers [167] realized a Rh-catalyzed electro-
chemical phosphorylation of aryl C�H bonds (Fig. 7c). Anodic
oxidation is used to generate the oxidized Rh-complex from which
reductive elimination readily forges the C�P bond. This transfor-
mation is highly efficient and overcomes several disadvantages of
previously reported non-electrochemical methods. Very recently,
Mei, Hong, and co-workers [168] developed electrochemical Rh
(III)-catalyzed vinylic C–H annulation of acrylamides with alkynes.
Varying the N-substitution of acrylamides enables divergent syn-
theses of a-pyridones and cyclic imidates. Excellent regioselectivi-
ties are achieved with unsymmetrical alkynes, including terminal
alkynes (Fig. 7d). The origins of the substituent-controlled chemos-
electivity were probed by DFT calculations. A seven-membered
vinyl-rhodium intermediate is formed after C–H activation and
alkyne insertion. The seven-membered vinyl-rhodium intermedi-
ate then undergoes either a classic neutral concerted reductive
elimination to give a-pyridones or an ionic stepwise pathway to
give cyclic imidates. Gooßen and co-workers [169] developed an
interesting protocol for Rh-catalyzed dehydrogenative coupling of
benzoic acids to prepare 2,20-biaryldicarboxylate derivatives.

3.6. Copper complexes

Cu-catalyzed intermolecular C�H amination of arenes has been
widely investigated since Yu and Chatani groups [170,171] inde-
pendently developed aerobic Cu-catalyzed C�H aminations in
2006. However, these transformations typically require chemical
oxidants. In 2018, Mei and co-workers [172] demonstrated an
early example of a Cu-catalyzed electrochemical C–H amination
of aniline derivatives with secondary amines under mild reaction
conditions in an undivided cell (Fig. 8a). n-Bu4NI is essential for
this transformation. The process is an operationally simple and
robust method for the construction of arylamines. Subsequently,
Ackermann and co-workers [173] developed an elegant example
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of an electrooxidative Cu-catalyzed annulative C�H alkynylation
cascade reaction (Fig. 8b). Electron deficient and electron-rich ben-
zamides are both suitable for this transformation, and the process
is also successful when alkynyl carboxylic acids are used instead of
terminal alkynes. An anodic oxidation for Cu(I/II/III) recycling was
proposed. Recently, Xie and co-workers [174] demonstrated an
elegant protocol for Cu-catalyzed electrochemical B�H oxygena-
tion of ortho-carboranes (Fig. 8c). B(4,5)-diphenolated o-
carboranes could be afforded with lithium phenolates, whereas B
(4)-monooxygenated o-carboranes could be produced with lithium
tert-butoxide. These reactions putatively require that an active Cu
(III) species be generated via anodic oxidation. Lin and co-workers
[175] developed a novel dual electrocatalysis for enantioselective
hydrocyanation of conjugated alkenes, which merges two radical
reactions: a cobalt-catalyzed hydrogen atom transfer (HAT) and a
copper-promoted radical cyanation (Fig. 8d). Anodic oxidation is
required for recycling both cobalt and copper. Notably, a chiral
copper catalyst enables an enantioselective variant of the reaction.
Lin and Hu group [176,177] have also developed other interesting
electrochemical Cu-catalyzed works via anodic oxidation, involv-
ing radical process in the absence of chemical oxidants.
3.7. Iridium and gold complexes

In 2019, Mei and co-workers [178] reported the first example of
an Ir-catalyzed vinylic C�H annulation of acrylic acids with alky-
nes (Fig. 9a). Preliminary mechanistic experiments revealed that
anodic oxidation is essential for the reoxidation of the diene-Ir(I)
complex to an Ir(III) species with concomitant release of the prod-
uct. Recently Guo, Mei and co-workers [179] further extended this
system to regioselective annulations of benzoic acids with internal
alkynes. Shi and co-workers [180] applied this combined electro-
chemistry and Ir catalysis strategy to realize the alkynylation of
C(sp2)�H bonds. The high oxidation potential between Au(I) and
Au(III) makes gold redox catalysis require strong oxidants such
as Selectfluor or (diacetoxyiodo)benzene, which results in low
functional group compatibility. A more sustainable, economical,
and practical protocol to promote Au(I)/Au(III) redox catalysis is
thus in high demand. In 2019, Shi and co-workers [181] reported
the first example of a gold-catalyzed electrochemical oxidative
coupling of terminal alkynes that affords symmetrical or unsym-
metrical 1,3-diynes with high functional group compatibility
(Fig. 9b). This reaction is proposed to involve Au(I)/Au(III) redox
catalysis wherein oxidation of Au(I) to Au(III) by the anode is key.
4. Manganese complexes as electrocatalysts

In 2017, Lin and co-workers [182] realized an electrochemical
diazidation of olefins using a redox-active manganese catalyst to
give various 1,2-diazides, which can be easily converted to vicinal
diamines in a single step (Fig. 10a). Following this study, the Lin
group and other groups developed various of electrochemical
manganese-catalyzed radical cascade difunctionalizations of alke-
nes, including dichlorination [183], chlorotrifluoromethylation
[184], chloroalkylation [185], oxychlorination [186], trifluo-
romethylation [187], Wacker oxidation [188] and other transfor-
mations [189,190]. In 2020, Lei and co-workers [191] developed
manganese-catalyzed electrochemical cascade cyclization reac-
tions of N-substituted 2-arylbenzoimidazoles with alkylboronic
acids, affording various benzo[4,5]imidazo[2,1-a]isoquinolin-
6(5H)-one derivatives (Fig. 10b). Associated mechanistic studies
indicate that alkyl radicals are generated from alkylboronic acids
via anodic oxidation. Recently, the same group [192] developed a
manganese-catalyzed electrochemical azidation of C(sp3)–H bonds
using an electrophotocatalytic strategy (Fig. 10c). This transforma-



Fig. 7. (Color online) (a) Rhodium-catalyzed electrochemical C�H functionalization [165], (b) C�C alkenylation [166], and (c) C�H phosphorylation [167]. (d) Divergent
rhodium-catalyzed electrochemical vinylic C�H annulation with alkynes [168].
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Fig. 8. (Color online) Copper-catalyzed electrochemical (a) C�H amination [172], (b) alkyne annulation [173], and (c) cage B�H oxygenation [174]. (d) Copper-catalyzed
enantioselective hydrocyanation of conjugated alkenes [175].
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Fig. 9. (Color online) (a) lridium-catalyzed electrochemical vinylic C�H annulation [178]; (b) gold-catalyzed electrochemical oxidative coupling of terminal alkynes [181].
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tion provides an efficient method for azidation of tertiary and sec-
ondary benzylic C(sp3)�H bonds, aliphatic C(sp3)�H bonds, and
drug-molecule-based C(sp3)�H bonds. An alkyl azide could be
formed from the transfer of an azide from Mn(III)/L-N3 to an alkyl
radical, which itself could be generated from photo-catalytic HAT
or abstraction of an C(sp3)�H bond by an azide radical (Fig. 10c).
More recently, the same group [193] developed a Mn-catalyzed
C�H/P�H cross coupling reaction. Ackermann and co-workers
[194] reported a similar protocol for Mn-catalyzed electrochemical
C(sp3)–H azidation without light irradiation.
5. Conclusion and outlook

In this review, recent advances in transition metal-catalyzed
electroorganic synthesis are summarized. The combination of elec-
trocatalysts and electrosynthesis allows the generation of novel
intermediates that can modulate and better control chemical reac-
2424
tivity. In addition, electrochemistry with electrocatalysts provides
the basis for much broader functional group combability and syn-
thetic scope. As shown, significant progress has been made in this
area in recent years, but some issues remain to be resolved. For
example, the development of more efficient electrocatalysts is
highly needed since catalytic efficiency is still relatively low (in
most of the reported examples, 5 mol%–20 mol% of the electrocat-
alyst is often required). Improvement will require the discovery
and development of electrochemically competent ligands that
could tune catalytic activity. Another issue requiring resolution is
the development of electrode materials which are modified with
immobilized transition metal electrocatalysts. The modified elec-
trode would ostensibly provide a recyclable electrocatalyst, thus
improving resource utilization. Thirdly, asymmetric electrochem-
istry with transition metal complexes has been sparingly devel-
oped. The discovery of novel chiral electrocatalysts to enable
enantioselective transformations is at the forefront of organic elec-



Fig. 10. (Color online) (a) Manganese-catalyzed diazidation of alkenes [182]; (b) manganese-catalyzed electrochemical radical cascade cyclization [191]; [c] manganese-
electrophotocatalytic oxidative azidation of C(sp3)�H Bonds [192].
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trochemistry. Lastly, functionalization of simple unactivated alkyl
C–H bonds needs to be developed. Through the control of electro-
chemical oxidation potential, transition metal electrocatalysts
2425
could be maintained at a high oxidation state, which would be con-
ducive for the activation such bonds. Electrocatalytic methods
should be well suited to tackle this problem, but unfortunately
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there is scant research in this area to date. We hope that this
review provides a helpful overview of the current state of indirect
electrocatalytic organic reactions. We hope that remaining issues
mentioned above will be solved by novel electrocatalysis methods
developed in near future.
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